首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Stream macroinvertebrate communities vary naturally among types of habitats where they are sampled, which affects the results of environmental assessment. We analyzed macroinvertebrates collected from riffle and snag habitats to evaluate influences of habitat-specific sampling on taxon occurrence, assemblage measures, and biotic indices. We found considerably more macroinvertebrate taxa unique to snags (143 taxa) than to riffles (75 taxa), and the numbers of taxa found in both riffles and snags (149 taxa) were similar to that found in snags. About 64% of the 47 macroinvertebrate measures we tested differed significantly between riffles and snags. Eighty percent intercepts of regressions between biotic indices and urban or agricultural land uses differed significantly between riffles and snags. The Hilsenhoff biotic index calculated from snag samples explained 69% of the variance of riffle samples and classified 66% of the sites into the same stream health group as the riffle samples. However, four multimetric indices for snag samples explained less than 50% of the variance of riffle samples and classified less than 50% of the sites into the same health group as the riffle samples. We concluded that macroinvertebrate indices developed for riffle/run habitat should not be used for snag samples to assess stream impairment. We recommend developing an index of biotic integrity specifically for snags and using snags as an alternate sampling substrate for streams that naturally lack riffles.  相似文献   

2.
We used boosted regression trees (BRT) to model stream biological condition as measured by benthic macroinvertebrate taxonomic completeness, the ratio of observed to expected (O/E) taxa. Models were developed with and without exclusion of rare taxa at a site. BRT models are robust, requiring few assumptions compared with traditional modeling techniques such as multiple linear regression. The BRT models were constructed to provide baseline support to stressor delineation by identifying natural physiographic and human land use gradients affecting stream biological condition statewide and for eight ecological regions within the state, as part of the development of numerical biological objectives for California’s wadeable streams. Regions were defined on the basis of ecological, hydrologic, and jurisdictional factors and roughly corresponded with ecoregions. Physiographic and land use variables were derived from geographic information system coverages. The model for the entire state (n?=?1,386) identified a composite measure of anthropogenic disturbance (the sum of urban, agricultural, and unmanaged roadside vegetation land cover) within the local watershed as the most important variable, explaining 56 % of the variance in O/E values. Models for individual regions explained between 51 and 84 % of the variance in O/E values. Measures of human disturbance were important in the three coastal regions. In the South Coast and Coastal Chaparral, local watershed measures of urbanization were the most important variables related to biological condition, while in the North Coast the composite measure of human disturbance at the watershed scale was most important. In the two mountain regions, natural gradients were most important, including slope, precipitation, and temperature. The remaining three regions had relatively small sample sizes (n?≤?75 sites) and had models that gave mixed results. Understanding the spatial scale at which land use and land cover affect taxonomic completeness is imperative for sound management. Our results suggest that invertebrate taxonomic completeness is affected by human disturbance at the statewide and regional levels, with some differences among regions in the importance of natural gradients and types of human disturbance. The construction and application of models similar to the ones presented here could be useful in the planning and prioritization of actions for protection and conservation of biodiversity in California streams.  相似文献   

3.
We quantified potential biases associated with lakes monitored using non-probability based sampling by six state agencies in the USA (Michigan, Wisconsin, Iowa, Ohio, Maine, and New Hampshire). To identify biases, we compared state-monitored lakes to a census population of lakes derived from the National Hydrography Dataset. We then estimated the probability of lakes being sampled using generalized linear mixed models. Our two research questions were: (1) are there systematic differences in lake area and land use/land cover (LULC) surrounding lakes monitored by state agencies when compared to the entire population of lakes? and (2) after controlling for the effects of lake size, does the probability of sampling vary depending on the surrounding LULC features? We examined the biases associated with surrounding LULC because of the established links between LULC and lake water quality. For all states, we found that larger lakes had a higher probability of being sampled compared to smaller lakes. Significant interactions between lake size and LULC prohibit us from drawing conclusions about the main effects of LULC; however, in general lakes that are most likely to be sampled have either high urban use, high agricultural use, high forest cover, or low wetland cover. Our analyses support the assertion that data derived from non-probability-based surveys must be used with caution when attempting to make generalizations to the entire population of interest, and that probability-based surveys are needed to ensure unbiased, accurate estimates of lake status and trends at regional to national scales.  相似文献   

4.
In an ongoing effort to propose biologically protective nutrient criteria, we examined how total nitrogen (TN) and its forms were associated with macroinvertebrate communities in wadeable streams of Maryland. Taxonomic and functional metrics of an index of biological integrity (IBI) were significantly associated with multiple nutrient measures; however, the highest correlations with nutrients were for ammonia-N and nitrite-N and among macroinvertebrate measures were for Beck’s Biotic Index and its metrics. Since IBI metrics showed comparatively less association, we evaluated how macroinvertebrate taxa related to proposed nutrient criteria previously derived for those same streams instead of developing nutrient–biology thresholds. We identified one tolerant and three intolerant taxa whose occurrence appeared related to a TN benchmark. Individually, these taxa poorly indicated whether streams exceeded the benchmark, but combining taxa notably improved classification rates. We then extracted major physiochemical gradients using principal components analysis to develop models that assessed their influence on nutrient indicator taxa. The response of intolerant taxa was predominantly influenced by a nutrient-forest cover gradient. In contrast, habitat quality had a greater effect on tolerant taxa. When taxa were aggregated into a nutrient sensitive index, the response was primarily influenced by the nutrient-forest gradient. Multiple lines of evidence highlight the effects of excessive nutrients in streams on macroinvertebrate communities and taxa in Maryland, whose loss may not be reflected in metrics that form the basis of biological criteria. Refinement of indicator taxa and a nutrient-sensitive index is warranted before thresholds in aquatic life to water quality are quantified.  相似文献   

5.
为支撑流域水生态目标的业务化管理,提高水生态监测和评价的可操作性,突破物种分类鉴定的技术瓶颈,以大型底栖无脊椎动物为研究对象,在江苏省太湖流域布设120个采样点,于2013年1—3月、7—8月和10—11月开展3次监测。以最小干扰为参照状态,对涉及物种丰度、物种多度组成、耐污能力和摄食类群的72个候选指数进行分布范围、判别能力及相关性分析,结合指数获取的便利性及物种分类的难易程度,最终筛选出3个核心指数构成大型底栖无脊椎动物完整性业务化评价指数,其中湖荡、河流和水库的指数为软体动物分类单元数、优势分类单元相对多度和BMWP指数,溪流的指数为ETO分类单元数、前三位优势分类单元相对多度和BMWP指数。经验证,业务化指数与环境梯度有较好的响应关系,且可操作性强,具备开展业务化应用的前景。但目前的流域水生态目标管理尚处于摸索阶段,技术体系还须在业务化过程中不断修正和完善。  相似文献   

6.
The Mid-Atlantic Highlands Assessment (MAHA) included the sampling of macroinvertebrates from 424 wadeable stream sites to determine status and trends, biological conditions, and water quality in first through third order streams in the Mid-Atlantic Highlands Region (MAHR) of the United States in 1993–1995. We identified reference and impaired sites using water chemistry and habitat criteria and evaluated a set of candidate macroinvertebrate metrics using a stepwise process. This process examined several metric characteristics, including ability of metrics to discriminate reference and impaired sites, relative scope of impairment, correlations with chemical and habitat indicators of stream disturbance, redundancy with other metrics, and within-year variability. Metrics that performed well were compared with metrics currently being used by three states in the region: Pennsylvania, Virginia, and West Virginia. Some of the metrics used by these states did not perform well when evaluated using regional data, while other metrics used by all three states in some form, specifically number of taxa, number of EPT taxa, and Hilsenhoff Biotic Index, performed well overall. Reasons for discrepancies between state and regional evaluations of metrics are explored. We also provide a set of metrics that, when used in combination, may provide a useful assessment of stream conditions in the MAHR.  相似文献   

7.
Watershed land use in suburban areas can affect stream biota through degradation of instream habitat, water quality, and riparian vegetation. By monitoring stream biotic communities in various geographic regions, we can better understand and conserve our watershed ecosystems. The objective of this study was to examine the relationship between watershed land use and the integrity of benthic invertebrate communities in eight streams that were assessed over a 3-year period (2001-2003). Sites were selected from coastal Rhode Island watersheds along a residential land-use gradient (4-59%). Using the rapid bioassessment protocol, we collected biological, physicochemical, habitat, and nutrient data from wadeable stream reaches and compared metrics of structure and integrity. Principal component analyses showed significant negative correlation of indicators for stream physicochemical, habitat, and instream biodiversity with increasing residential land use (RLU) in the watershed. The physicochemical variables that were most responsive to percent RLU were conductivity, instream habitat, nitrate, and dissolved inorganic nitrogen (DIN). The positive correlation of DIN with percent RLU indicated an anthropogenic source of pollution affecting the streams. The biotic composition of the streams shifted from sensitive to insensitive taxa as percent RLU increased; the most responsive biological variables were percent Ephemeroptera, percent Scrapers, percent Insects, and the Hilsenhoff biotic index. These data show the importance of land management and conservation at the watershed scale to sustaining the biotic integrity of coastal stream ecosystems.  相似文献   

8.
As part of the activities of the Multi-Resolution Land Characteristics (MRLC) Interagency Consortium, an intermediate-scale land cover data set is being generated for the conterminous United States. This effort is being conducted on a region-by-region basis using U.S. Standard Federal Regions. To date, land cover data sets have been generated for Federal Regions 3 (Pennsylvania, West Virginia, Virginia, Maryland, and Delaware) and 2 (New York and New Jersey). Classification work is currently under way in Federal Region 4 (the southeastern United States), and land cover mapping activities have been started in Federal Regions 5 (the Great Lakes region) and 1 (New England). It is anticipated that a land cover data set for the conterminous United States will be completed by the end of 1999. A standard land cover classification legend is used, which is analogous to and compatible with other classification schemes. The primary MRLC regional classification scheme contains 23 land cover classes.The primary source of data for the project is the Landsat thematic mapper (TM) sensor. For each region, TM scenes representing both leaf-on and leaf-off conditions are acquired, preprocessed, and georeferenced to MRLC specifications. Mosaicked data are clustered using unsupervised classification, and individual clusters are labeled using aerial photographs. Individual clusters that represent more than one land cover unit are split using spatial modeling with multiple ancillary spatial data layers (most notably, digital elevation model, population, land use and land cover, and wetlands information). This approach yields regional land cover information suitable for a wide array of applications, including landscape metric analyses, land management, land cover change studies, and nutrient and pesticide runoff modeling.  相似文献   

9.
水质生物监测是水生态环境质量管理的重要内容,构建实用性强的生物指数有助于推动中国的水质生物监测工作。根据江苏、浙江、辽宁、江西和湖南等省份的溪流与河流湖泊共计839个底栖动物数据,将中国已有的底栖动物科级分类单元水质敏感性分值打分表扩充和修订至159个科。采用统计法分别构建了符合中国可涉水水体(溪流等)和不可涉水水体(河流、湖泊等)底栖动物分值指数(Chinese Macroinvertebrate Score Index,CMSI)和底栖动物平均分值指数(Average Chinese Macroinvertebrate Score Index,ACMSI)及水质评价等级体系。CMSI和ACMSI与总氮、总磷、高锰酸盐指数和溶解氧之间Pearson相关性显著,表明研究构建的CMSI和ACMSI是可以反映水质变化的。建议通过实践进一步验证CMSI和ACMSI的可靠性和实用性。  相似文献   

10.
Benthic algal assemblages, water chemistry, and habitat were characterized at 25 stream sites in the Willamette Basin, Oregon, during low flow in 1994. Seventy-three algal samples yielded 420 taxa — mostly diatoms, blue-green algae, and green algae. Algal assemblages from depositional samples were strongly dominated by diatoms (76% mean relative abundance), whereas erosional samples were dominated by blue-green algae (68% mean relative abundance).Canonical correspondence analysis (CCA) of semiquantitative and qualitative (presence/absence) data sets identified four environmental variables (maximum specific conductance, % open canopy, pH, and drainage area) that were significant in describing patterns of algal taxa among sites. Based on CCA, four groups of sites were identified: streams in forested basins that supported oligotrophic taxa, such as Diatoma mesodon;small streams in agricultural and urban basins that contained a variety of eutrophic and nitrogen-heterotrophic algal taxa; larger rivers draining areas of mixed land use that supported planktonic, eutrophic, and nitrogen-heterotrophic algal taxa; and streams with severely degraded or absent riparian vegetation (> 75% open canopy) that were dominated by other planktonic, eutrophic, and nitrogen-heterotrophic algal taxa. Patterns in water chemistry were consistent with the algal autecological interpretations and clearly demonstrated relationships between land use, water quality, and algal distribution patterns.  相似文献   

11.
Using Multiple Taxonomic Groups to Index the Ecological Condition of Lakes   总被引:6,自引:0,他引:6  
Biological indicators of communitiestypically reflect a common environmental signalreflecting the general condition of the ecosystem, as well asindividual signals by indicators differentiallysensitive to particular environmental conditions. Wedescribe here a method of integrating and interpretingsuch indicators from 19 New England lakes for fivetaxonomic groups (diatoms, benthos, zooplankton, fish,and birds). Our approach provides a systematicstandardized way to integrate multiple metrics fromdifferent taxonomic groups by addressing four elementscrucial to analyzing data from multiple indicators: covariate control, re-scaling of data, standardizing the sign of responses, and dimensional reduction. We evaluated the biologicalmetrics against individual environmental stressors andagainst multivariate physicochemical metricscharacterizing general anthropogenic stress among thelakes. The method detected a response to variationin the gross environmental condition of the lakes thatwas correlated across taxa and metrics. In addition,a differential response to near shore conditions wasdemonstrated for fish. The success of the approach inthis study lends support to its general application toecological monitoring involving complex data sets.  相似文献   

12.
We studied the response of benthic diatoms to recent metal contamination in littoral cores collected at 25 sites in 11 lakes situated at different distances from a smelter in the Rouyn-Noranda mining region (Quebec). Diatom response was described in terms of density, diversity, and taxonomic composition of the entire assemblages and as abundance of individual indicator taxa. Metal concentrations were measured in sediment and in the overlying water (as total dissolved and as free-ions). Sediment metal contamination was significantly higher in lakes located <10 km from the smelters than in lakes farther away. Such difference was not significant when metal concentrations in the overlying water were considered. Metal contamination did not affect diatom density, which indeed was highest in the most contaminated lake. Diversity (either measured as number of taxa or as Shannon and evenness indices) was instead significantly higher in lakes close to the smelter than elsewhere. Redundancy analysis indicated that diatom composition changed along a gradient in alkalinity (CO?) and one in sediment metal contamination (Cd, Hg, Cu). We identified three diatom taxa (Fragilaria construens var. venter, F. construens var. pumila, and Brachysira vitrea) that increased in relative and absolute abundance with metal contamination. Benthic diatom responses at the community (density, diversity, assemblage composition) and population levels (abundance of selected benthic taxa) were stronger to the sediment metal contamination than to the contamination of overlying water. Comparisons with available literature indicated that, for monitoring recent sediment contamination, diatoms in littoral sediments are preferable to invertebrates that mostly respond to overlying water. Diatoms in littoral cores are therefore unique as tools for monitoring recent contamination of lake sediments.  相似文献   

13.
RecentAbstract. Recent approaches to wetland assessment have advocated a multilevel approach which incorporates assessments based on landscape (remote sensing) data, on-site but “rapid” methods, and intensive methods where quantitative data is collected. Brown and Vivas (2004) recently pro- posed an assessment method that uses remote sensing information (Landscape Development Index or LDI) and propose that it may also be usable as a quantified human disturbance gradient. The LDI was evaluated using a large reference wetland data set from Ohio using land use percentages within a 1 km radius circle of the wetlands. The LDI had interpretable and significant relationships with another human disturbance gradient (the Ohio Rapid Assessment Method for Wetlands or ORAM) and with most metrics and scores from the Vegetation Index of Biotic Integrity (VIBI) developed for use in the State of Ohio. Metrics from emergent wetlands had the most significant correlations with the LDI (10 of 10 metrics), followed by forested wetlands (8 of 10 metrics) and shrub wetlands (4 of 10). Poor correlation for VIBI scores and metrics of shrub wetlands was due to differences in attainable LDI scores based on ecoregion and natural buffers shielding the wetland from otherwise intensive land uses. The ORAM and VIBI were developed for use in wetlands in Ohio completely independent of the LDI. It is an important test of the LDI concept that so many interpretable and significant relationships occurred between the VIBI scores, VIBI metric values, and the ORAM scores. For the purposes of VIBI development, the LDI is an independent, quantified disturbance gradient that has provided an additional test of the VIBI. Given its theoretical underpinnings and the fact that it uses quantified land use percentages, the LDI has many advantages over more qualita- tive human disturbance gradients. Using land use percentages from increasingly smaller distances from the wetland edge (100-200 m) may improve the resolution of the LDI to detect on-site dis-turbances to a wetland which degrade its ecological condition. The LDI should be evaluated with other large reference data sets in other regions to evaluate its validity and usefulness as an assessment tool.  相似文献   

14.
Standard protocols are critical for maximizing data comparability and aggregation in national monitoring programs, and taxa richness is a common indicator of site condition and biological diversity. There are two general approaches for sampling stream macroinvertebrate assemblages: targeted richest habitat and site wide. At seven sites, we compared three methods: Ontario Benthic Biomonitoring Network (OBBN), Environmental Monitoring and Assessment Program (EMAP), and Rapid Bioassessment Protocol (RBP). The OBBN method produced a biased sample at a site with a single small riffle, the RBP method produced the most total taxa, and the EMAP method produced the most taxa at four sites and the most individuals at six sites. The RBP method produced asymptotes for percent tolerant individuals, percent chironomid individuals, and Hilsenhoff Biotic Index score after five to ten stations. The EMAP method produced asymptotes for those metrics after 10 to 20 stations per site. The EMAP method typically required half the number of stations as the RBP method to obtain 70–90% of true taxa richness as estimated by the Jaccard coefficient. We conclude that the EMAP method is preferable because of its greater precision in taxa richness estimates.  相似文献   

15.
The choice to use or not use a preservative before sorting macroinvertebrate samples (i.e., dead specimens vs. living specimens) is based on studies not solely focused on the effects of preservation. Using identical sample processing protocols, we compared preserved and unpreserved samples for the following parameters: (1) the number of taxa and individuals for each major macroinvertebrate group, (2) ecological quality classes calculated with a multimetric index developed for the assessment of small Dutch lowland streams, and (3) costs of sample processing. We collected macroinvertebrate samples from three lowland streams in the Netherlands. At each site, we collected six replicate samples, of which three samples were preserved and three were not. Significantly different numbers of Ephemeroptera individuals and Hydracarina taxa and individuals were collected from preserved samples compared to unpreserved samples. In assessments based on these individual metrics, standardization of sample processing will be required. In streams with Ephemeroptera, the preservation of samples is necessary to optimize the number of Ephemeroptera individuals collected. In streams that contain Hydracarina, the preservation of samples will result in an underestimation of the number of Hydracarina taxa and individuals present. In only one instance there was a difference in ecological quality between preserved and unpreserved samples, indicating that assessing small Dutch lowland streams does not require standardization of sample preservation as part of the sample processing protocol. We detected no significant differences in sample processing costs between preserved and unpreserved samples.  相似文献   

16.
As a part of the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program-Surface Waters (EMAP-SW), sedimentary diatom assemblages were studied from 66 lakes in the northeastern U.S.A. to evaluate the applicability of diatoms for this nation-wide monitoring program. Sediment cores were collected from the study lakes and diatoms were analyzed from the top (present-day) and bottom (pre-industrial) sediment samples. Canonical correspondence analysis (CCA) was used to examine which environmental variables correlate most closely with the distributions of diatom taxa in the top (surface) samples. Forward selection and Monte Carlo permutation tests showed that diatom species distributions were significantly related to total lakewater phosphorus (TP), pH, chloride, Secchi depth, and lake size and maximum depth. We developed weighted-averaging calibration and regression models for inferring TP (r 2=0.62), chloride (r 2=0.61), pH (r 2=0.86), and Secchi depth (r 2=0.62). An index of overall lake disturbance was also developed. Our diatom data indicate that marked changes have occurred in the study lakes since pre-industrial times as a result of anthropogenic activity.  相似文献   

17.
The assessment of water vulnerability and pollution hazard traditionally places particular emphasis on the study on groundwaters more than on surface waters. Consequently, a GIS-based Lake Pollution Hazard Index (LPHI) was proposed for assessing and mapping the potential pollution hazard for shallow lakes due to the interaction between the Potential Pollutant Load and the Lake Vulnerability. It includes easily measurable and commonly used parameters: land cover, terrain slope and direction, and soil media. Three shallow lake ecosystems of the southeastern Pampa Plain (Argentina) were chosen to test the usefulness and applicability of this suggested index. Moreover, anthropogenic and natural medium influence on biophysical parameters in these three ecosystems was examined. The evaluation of the LPHI map shows for La Brava and Los Padres lakes the highest pollution hazard (≈30 % with high to very high category) while Nahuel Rucá Lake seems to be the less hazardous water body (just 9.33 % with high LPHI). The increase in LPHI value is attributed to a different loading of pollutants governed by land cover category and/or the exposure to high slopes and influence of slope direction. Dissolved oxygen and biochemical oxygen demand values indicate a moderately polluted and eutrophized condition of shallow lake waters, mainly related to moderate agricultural activities and/or cattle production. Obtained information by means of LPHI calculation result useful to perform a local diagnosis of the potential pollution hazard to a freshwater ecosystem in order to implement basic guidelines to improve lake sustainability.  相似文献   

18.
We carried out a multiple-scale assessment of biotic resources within Natchez Trace State Forest (NTSF) in western Tennessee, focusing on the relation between biotic communities and seven previously developed ecological land types (ELT, based on topography and soils). We wanted to test the functional ability of ELTs for biodiversity stewardship. Woody and herbaceous flora as well as herpetofauna and avifauna communities had substantial differences between upland and lowland forests. However, none of the faunal communities distinguished among upland ELTs. In addition, herbaceous taxa also failed to distinguish upland ELTs. The results suggest the present use of ELTs at NTSF will not be a helpful guide to land stewardship focusing on biodiversity. The disturbance history of the Forest and the mobility of animals are given as potential explanations for a poor relationship between abiotic ELTs and the resident biota.  相似文献   

19.
Identification of reference streams and human disturbance gradients are crucial steps in assessing the effects of human disturbances on stream health. We describe a process for identifying reference stream reaches and assessing disturbance gradients using readily available, geo-referenced stream and human disturbance databases. We demonstrate the utility of this process by applying it to wadeable streams in Michigan, USA, and use it to identify which human disturbances have the greatest impact on streams. Approximately 38% of cold-water and 16% of warm-water streams in Michigan were identified as being in least-disturbed condition. Conversely, approximately 3% of cold-water and 4% of warm-water streams were moderately to severely disturbed by landscape human disturbances. Anthropogenic disturbances that had the greatest impact on moderately to severely disturbed streams were nutrient loading and percent urban land use within network watersheds. Our process for assessing stream health represents a significant advantage over other routinely used methods. It uses inter-confluence stream reaches as an assessment unit, permits the evaluation of stream health across large regions, and yields an overall disturbance index that is a weighted sum of multiple disturbance factors. The robustness of our approach is linked to the scale of disturbances that affect a stream; it will be less robust for identifying less degraded or reference streams with localized human disturbances. With improved availability of high-resolution disturbance datasets, this approach will provide a more complete picture of reference stream reaches and factors contributing to degradation of stream health.  相似文献   

20.
Data from 25 sites were used to evaluate associations between macroinvertebrate assemblages on large woody debris (snags) and environmental variables in the lower San Joaquin and Sacramento River drainages in California as part of the U.S. Geological Survey's National Water Quality Assessment Program. Samples were collected from 1993 to 1995 in the San Joaquin River drainage and in 1996 and 1997 in the Sacramento River drainage. Macroinvertebrate taxa were aggregated to the family (or higher) level of taxonomic organization, resulting in 39 taxa for analyses. Only the 31 most common taxa were used for two-way indicator species analysis (TWINSPAN) and canonical correspondence analysis (CCA). TWINSPAN analysis defined four groups of snag samples on the basis of macroinvertebrate assemblages. Analysis of variance identified differences in environmental and biotic characteristics among the groups. These results combined with the results of CCA indicated that mean dominant substrate type, gradient, specific conductance, water temperature, percentage of the basin in agricultural land use, percentage of the basin in combined agricultural and urban land uses, and elevation were important factors in explaining assemblage structure. Macroinvertebrate assemblages on snags may be useful in family level bioassessments of environmental conditions in valley floor habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号