首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical quantum-mechanical positron lifetime calculations were performed for mono-vacancies, di-vacancies, tri-vacancies and small nano-voids containing helium and hydrogen in neutron irradiated beryllium. Helium and hydrogen atoms in the sample after the irradiation are considered as atoms forming interstitial O-type loops. Spherical clusters of vacancies are included in the calculations as a reference. It was found that the presence of He and H atoms significantly changes the positron lifetime in irradiated beryllium. A correlation between the positron lifetime and mutual position of vacancies in nano-voids and interstitial loops was established.  相似文献   

2.
Yttrium oxide dispersion strengthened (ODS) and non-ODS EUROFER produced by mechanical alloying and hot isostatic pressing have been subjected to isochronal annealing up to 1523 K, and the evolution of the open-volume defects and their thermal stability have been investigated using positron lifetime and coincidence Doppler broadening (CDB) techniques. Transmission electron microscopy (TEM) observations have also been performed on the studied samples to verify the characteristics of the surviving defects after annealing at 1523 K. The CDB spectra of ODS EUROFER exhibit a characteristic signature that is attributed to positron annihilation in Ar-decorated cavities at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature shows three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. Three-dimensional vacancy clusters, or voids, are detected in either materials in as-HIPed condition and after annealing at T ? 623 K. In the temperature range 823-1323 K, these voids’ growth and nucleation and the growth of other new species of voids take place. Above 1323 K, some unstable cavities start to anneal out, and cavities associated to oxide particles and other small precipitates survive to annealing at 1523 K. The TEM observations and the positron annihilation results indicate that these cavities should be decorated with Ar atoms absorbed during the mechanical alloying process.  相似文献   

3.
The behaviour of vacancy like implantation-induced defects created in the track region of 800 keV 3He ions in polycrystalline tungsten was studied by Doppler broadening spectroscopy as a function of annealing temperature. A slow positron beam, coupled with a Doppler broadening spectrometer, was used to measure the low- and high-momentum annihilation fractions, S and W, respectively, as a function of positron energy in tungsten samples implanted at different fluences from 1014 to 5 × 1016 cm−2. The behaviour of the S(E), W(E) and S(W) plots with the annealing temperature clearly indicates that the irradiation-induced vacancy like defects begin to evolve between 523 and 573 K, whatever the implantation fluence. This first temperature stage evolution corresponds to the migration of the monovacancies created during implantation to form larger vacancy like defects of which depth profile is different from the initial radiation-induced defects one.  相似文献   

4.
Positron annihilation spectroscopy (PAS) and a computer simulation were used to investigate a defect production in reactor pressure vessel (RPV) steels irradiated by neutrons. The RPV steels were irradiated at 250 °C in a high-flux advanced neutron application reactor. The PAS results showed that mainly single vacancies were created to a great extent as a result of a neutron irradiation. Formation of vacancies in the irradiated materials was also confirmed by a coincidence Doppler broadening measurement. For estimating the concentration of the point defects in the RPV steels, we applied computer simulation methods, including molecular dynamics (MD) simulation and point defect kinetics model calculation. MD simulations of displacement cascades in pure Fe were performed with a 4.7 keV primary knock-on atom to obtain the parameters related to displacement cascades. Then, we employed the point defect kinetics model to calculate the concentration of the point defects. By combining the positron trapping rate from the PAS measurement and the calculated vacancy concentrations, the trapping coefficient for the vacancies in the RPV steels was determined, which was about 0.97 × 1015 s−1. The application of two techniques, PAS and computer simulation, provided complementary information on radiation-induced defect production.  相似文献   

5.
Positron annihilation spectroscopy along with glancing incidence X-ray diffraction have been used to investigate tin oxide thin films grown on Si by pulsed laser deposition. The films were prepared at room temperature and at 670 K under oxygen partial pressure. As-grown samples are amorphous and are found to contain large concentration of open volume sites (vacancy defects). Post-deposition annealing of as-grown samples at 970 K is found to drastically reduce the number of open volume sites and the film becomes crystalline. However, film grown under elevated temperature and under partial pressure of oxygen is found to exhibit a lower S-parameter, indicating lower defect concentration. Based on the analysis of experimental positron annihilation results, the defect-sensitive S-parameter and the overlayer thickness of tin oxide thin films are deduced. S-W correlation plots exhibit distinct positron trapping defect states in three samples.  相似文献   

6.
The hardening and embrittlement of reactor pressure vessel steels are of great concern in the actual nuclear power plant life assessment. This embrittlement is caused by irradiation-induced damage, and positron annihilation spectroscopy has been shown to be a suitable method for analysing most of these defects. In this paper, this technique (both positron annihilation lifetime spectroscopy and coincidence Doppler broadening) has been used to investigate neutron irradiated model alloys, with increasing chemical complexity and a reactor pressure vessel steel. It is found that the clustering of copper takes place at the very early stages of irradiation using coincidence Doppler broadening, when this element is present in the alloy. On the other hand, considerations based on positron annihilation spectroscopy analyses suggest that the main objects causing hardening are most probably self-interstitial clusters decorated with manganese in Cu-free alloys. In low-Cu reactor pressure vessel steels and in (Fe, Mn, Ni, Cu) alloys, the main effect is still due to Cu-rich precipitates at low doses, but the role of manganese-related features becomes pre-dominant at high doses.  相似文献   

7.
We give a progress report on ongoing calculations of phase shifts for very low energy elastic scattering of positrons by molecular hydrogen, using the generalised Kohn variational method. Further, provisional calculations of Zeff for molecular hydrogen at low energies are presented and discussed. The preliminary nature of the work is emphasised throughout.  相似文献   

8.
In this paper we present results for positron-Helium and positron-H2 scattering with the inclusion of the f-type Cartesian Gaussian functions in our computer codes of the Schwinger multichannel method (SMC). The effects of this modification can be noticed in the integral cross-section for both studied targets, with our new curves being closer to the most recent experimental measurements. The inclusion of the f-type function in the scattering wave function expansion also helped us to obtain a better set of results with the SMC method for the annihilation parameter. Data for differential cross-section (DCS) for helium is presented as well as our improvement in the DCS data in the forward scattering angles for the hydrogen molecule.  相似文献   

9.
A W(100) single crystal was implanted with low doses Ag, Cu, Mn, Cr, Al or In. Subsequent heating to 1600 K removed all vacancies and left the implants in substitutional positions. Low energy He was injected, and binding of He to the substitutional impurities was observed. Binding energies were found as high as 1.25 eV for one He atom. Pair potential calculations were performed; the calculated binding energies correspond reasonably with the measured ones.  相似文献   

10.
Annihilation characteristics of positrons and positronium (Ps) in thin metal and polymer films were studied. Monoenergetic positrons were implanted into free-standing thin W and Au films and the annihilation γ-rays of positron-electron pairs were measured as a function of the incident energy of positrons. At the front-side surfaces of the films, an emission of Ps into vacuum and a resultant self-annihilation of ortho-Ps (o-Ps) were observed. At the backside surfaces, the Ps emission was found to be enhanced by an increase in the numbers of epithermal positrons and/or secondary electrons introduced by the impact of energetic positrons. For thin polymer films (polyester and polystyrene), the emission rate of o-Ps from the backside surfaces was higher than that from the metal films, which was attributed to the out-diffusion of o-Ps formed in the films. Those results suggested that the emission rate of Ps into vacuum was sensitive to the Ps formation process in the bulk and at the surface.  相似文献   

11.
The vacancy defect evolution under electron irradiation in austenitic Fe-34.2 wt% Ni alloys containing oversized (aluminum) and undersized (silicon) alloying elements was investigated by positron annihilation spectroscopy at temperatures between 300 and 573 K. It is found that the accumulation of vacancy defects is considerably suppressed in the silicon-doped alloy. This effect is observed at all the irradiation temperatures. The obtained results provide evidence that the silicon-doped alloy forms stable low-mobility clusters involving several Si and interstitial atoms, which are centers of the enhanced recombination of migrating vacancies. The clusters of Si-interstitial atoms also modify the annealing of vacancy defects in the Fe-Ni-Si alloy. The interaction between small vacancy agglomerates and solute Al atoms is observed in the Fe-Ni-Al alloy under irradiation at 300-423 K.  相似文献   

12.
In the near surface of plasma facing materials, high concentrations of hydrogen and helium isotopes can build up, which will interact with the point defects resulting from the bombardment of the surface as well as with the impurities of the materials. It is important to develop an understanding of the evolution of W microstructure in such conditions and to be able to model this evolution. The task is very complex, as many elements have to be included in the model which must be all parameterized correctly. Isochronal annealings experiments are simple experiments which can help in the making of more complicated models. In this work, an object Kinetic Monte Carlo technique parameterized on ab initio calculations as been used to model He desorption in W. The He atoms and the self interstitial atoms have been found to be very mobile but they can bind quite strongly with impurities such as carbon or molybdenum atoms. The evolution of the number of defects in the Kinetic Monte Carlo simulation was found to be in good agreement with the resistivity changes observed during an He desorption experiment of above threshold He implantation in a thin wire of tungsten.  相似文献   

13.
Two-detector coincidence system and mono-energetic slow positron beam has been applied to measure the Doppler broadening spectra for single crystals of SiO2, SiO2 films with different thickness thermally grown on single crystal of Cz-Si, and single crystal of Si without oxide film. Oxygen is recognized as a peak at about 11.85 × 10−3m0c on the ratio curves. The S parameters decrease with the increase of positron implantation energy for the single crystal of SiO2 and Si without oxide film. However, for the thermally grown SiO2-Si sample, the S parameters in near surface of the sample increase with positron implantation energy. It is due to the formation of silicon oxide at the surface, which lead to lower S value. S and W parameters vary with positron implantation depth indicate that the SiO2-Si system consist of a surface layer, a SiO2 layer, a SiO2-Si interface layer and a semi-infinite Si substrate.  相似文献   

14.
A Monte Carlo code for simulations of ion channeling in crystals containing extended defects has been developed. A bent channel model of lattice distortions produced by dislocations has been used for defect analysis in ion implanted GaN. To test the code, the energy dependence of the dechanneling parameter has been calculated for crystals containing randomly displaced atoms and bent channels. It follows the 1/E and E1/2 dependence, respectively.  相似文献   

15.
The effect of gamma irradiation in air is investigated in two thermoplastic polyesters (PET and PEN), in order to evaluate the influence of aromatic density and the role of oxygen on radiation resistance. EPR measurements were carried out to detect radical stability against oxygen permeation and to provide radical characterization. Viscometric data reveal a different behaviour between films and thick samples. Positron annihilation spectra show a decrease of ortho-positronium intensity, which is more marked in film samples. ortho-positronium lifetime does not depend on the radiation dose.  相似文献   

16.
The behavior of 3d electrons in binary Nd-Fe alloys with different Nd content from 7 to 13 at.% has been studied by using positron coincidence Doppler broadening techniques. It has been found that the 3d electron signal in Nd2Fe17 alloy is relatively high as compared with other alloys. In Fe-rich Nd2Fe17 alloys, as the content of Fe increasing, the phase boundaries between α-Fe and Nd2Fe17 phases will increase, which gives rise to the decrease in the probability of positron annihilation with 3d electrons. In Nd-rich Nd2Fe17 alloys, with the decrease of Fe content, the d-d interactions are weakened, and the probability of positron annihilation with 3d electrons will decrease. The coercivity JHc and remanence Jr of the Nd-Fe alloy increase with the d-d interaction.  相似文献   

17.
Fe–Cu binary alloys are often used to mimic the behaviour of reactor pressure vessel steels. Their study allows identifying some of the defects responsible for irradiation-induced hardening. But recently the influence of manganese and nickel in low-Cu steels has been found to be important as well. In contrast with existing models found in the literature, which predict that hardening saturates after a certain dose, Fe alloys containing nickel and manganese irradiated in a material test reactor (BR2) show a continuous increase of hardening, up to doses equivalent to about 40 years of operation. Considerations based on positron annihilation spectroscopy analyses suggest that the main objects causing hardening in Cu-free alloys are most probably self-interstitial clusters decorated with manganese. In low-Cu reactor pressure vessel steels and in Fe–CuMnNi alloys, the main effect is still due to Cu-rich precipitates at low doses, but the role of manganese-related features becomes predominant at higher doses.  相似文献   

18.
A new measurement and analysis method for determining the ortho-positronium collisional quenching rate for low vapor-pressure gases is developed. It uses hydrophobic silica aerogels as highly efficient positronium formation media and microchambers. The value of the normalized positronium quenching rate, 1Zeff, for CH3Br measured by this method is 0.70 ± 0.04.  相似文献   

19.
Hydrogen and helium ion beams delivering different doses are used in the ion implantation, at room temperature, of China Low Activation Martensitic (CLAM) steel and the induced defects studied by Doppler broadening of gamma-rays generated in positron annihilation. Defect profiles are analysed in terms of conventional S and W parameters, measures of relative contributions of low and high-momentum electrons in the annihilation peak, as functions of incident positron energies E up to 30 keV. The behaviours of the S-E, W-E and S-W plots under different implantation doses indicate clearly that the induced defect size has obvious variation with depth, taking values that interpolate between surface and bulk values, and depend mainly on helium ion fluences. The S-W plot indicates that two types of defects have formed after ion implantation.  相似文献   

20.
Monte Carlo simulations of positron transport in nitrogen have been performed based on a complete set of cross sections that has been updated as a result of both experimental and theoretical advances. As the positronium formation cross section becomes dominant at larger mean energies in nitrogen than in argon and hydrogen the effect is much smaller in the case of nitrogen. Nevertheless, the differences between bulk and flux transport coefficients, even in nitrogen, exceed those for electrons, providing another example of the very special case of transport of charged particles under the influence of strong non-conservative collisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号