首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light emission from silicon dioxide doped with excess silicon by silicon ion implantation was investigated. Photoluminescence of silicon dioxide after silicon ion implantation and subsequent annealing at temperatures exceeding 1000 °C was observed. Excitation with monochromatic light with wavelength ranging from λ = 488 nm to λ = 266 nm leads to wide wavelength band emission ranging from about 650 nm up to about 850 nm with a maximum located at about 750 nm. This red/infrared photoemission is attributed to silicon nanocrystals created in silicon dioxide matrix. However, the same material used in electroluminescent experiments emitted blue and green light as well. In this paper the results of photo- and ionoluminescence experiments will be presented. The interest of the paper is focused on the problem of identification of different regions in the structure responsible for light emission of different wavelengths.  相似文献   

2.
Ion beam induced luminescence (IBIL) has been used for studying the emission features and the radiation hardness of white pigments. In particular, ZnO, gypsum and basic lead sulphate pigments have been analyzed with a 3.0 MeV H+ beam at the AGLAE Louvre laboratory. The same pigments mixed with different binders have been also analyzed on a canvas, in order to evaluate the contribution of the binders both to the IBIL spectra and to the radiation hardness. It turns out that the binder affects both the IBIL spectra and the radiation hardness of pigments when the emission bands are related to point defects, as occurs for ZnO.  相似文献   

3.
Silicon samples were implanted with helium and analyzed by atomic force microscopy (AFM) and Raman spectroscopy before and after annealing in the range of 523-1273 K. After annealing at 523 K, the amorphous area induced by He-ion implantation at room temperature was partially recovered and grain sizes became larger. The surface morphology was analyzed through AFM measurements and it was observed that root mean square of the surface roughness alters upwards and then downwards with annealing temperature.  相似文献   

4.
A new ionoluminescence (IL) apparatus has been successfully installed at the external scanning microbeam facility of the 3 MV Tandetron accelerator of the INFN LABEC in Firenze; the apparatus for photon detection has been fully integrated in the existing ion beam analysis (IBA) set-up, for the simultaneous acquisition of IL and PIXE/PIGE/BS spectra and maps.The potential of the new set-up is illustrated in this paper by some results extracted by the analysis of art objects and advanced semiconductor materials. In particular, the adequacy of the new IBA set-up in the field of cultural heritage is pointed out by the coupled PIXE/IL micro-analysis of a lapis lazuli stone; concerning applications in material science, IL spectra from a N doped diamond sample were acquired and compared with CL analyses to evaluate the relevant sensitivities and the effect of ion damage.  相似文献   

5.
Samples of Ge nanocrystals (Ge-ncs) embedded in amorphous SiO2 film were prepared by Ge ion implantation and subsequent primary thermal annealing. These samples were irradiated by neutron flux in a nuclear reactor followed by the second annealing. Irradiation with thermal neutrons leads to doping of nanocrystals with Ga, As and Se impurities due to nuclear transmutation of isotope 70Ge into 71Ga, isotope 74Ge into 75As, isotope 76Ge into 77Se, respectively (neutron transmutation doping, NTD). Irradiation with fast neutrons leads to appearance of radiation damages, which are expected to be removed after the second annealing. Photoluminescence (PL) measurements show that PL is quenched after neutron irradiation, and restored after annealing higher than 500 °C. The PL spectra of doped Ge-ncs samples show more intense exciton radiative luminescence than of undoped Ge-ncs sample, which is related to that the donor and acceptor impurities recombine the nonradiative centers in the interface of Ge-ncs and SiO2 matrix, and enhance the probability of exciton recombination.  相似文献   

6.
We have studied the influence of the ion species, ion energy, fluence, irradiation temperature and post-implantation annealing on the formation of shallow dislocation loops in silicon, for fabrication of silicon light emitting diodes. The substrates used were (1 0 0) Si, implanted with 20-80 keV boron at room temperature and 75-175 keV silicon at 100 and 200 °C. The implanted fluences were from 5 × 1014 to 1 × 1015 ions/cm2. After irradiation the samples were processed for 15 s to 20 min at 950 °C by rapid thermal annealing. Structural analysis of the samples was done by transmission electron microscopy and Rutherford backscattering spectrometry. In all irradiations the silicon substrates were not amorphized, and that resulted in the formation of extrinsic perfect and faulted dislocation loops with Burgers vectors a/2〈1 1 0〉 and a/3〈1 1 1〉, respectively, sitting in {1 1 1} habit planes. It was demonstrated that by varying the ion implantation parameters and post-irradiation annealing, it is possible to form various shapes, concentration and distribution of dislocation loops in silicon.  相似文献   

7.
Optical methods can provide important insights into the mechanisms and consequences of ion beam interactions with solids. This is illustrated by four distinctly different systems.X- and Y-cut LiNbO3 crystals implanted with 8 MeV Au3+ ions with a fluence of 1 × 1017 ions/cm2 result in gold nanoparticle formation during high temperature annealing. Optical extinction curves simulated by the Mie theory provide the average nanoparticle sizes. TEM studies are in reasonable agreement and confirm a near-spherical nanoparticle shape but with surface facets. Large temperature differences in the nanoparticle creation in the X- and Y-cut crystals are explained by recrystallisation of the initially amorphised regions so as to recreate the prior crystal structure and to result in anisotropic diffusion of the implanted gold.Defect formation in alkali halides using ion beam irradiation has provided new information. Radiation-hard CsI crystals bombarded with 1 MeV protons at 300 K successfully produce F-type centres and V-centres having the structure as identified by optical absorption and Raman studies. The results are discussed in relation to the formation of interstitial iodine aggregates of various types in alkali iodides. Depth profiling of and aggregates created in RbI bombarded with 13.6 MeV/A argon ions at 300 K is discussed.The recrystallisation of an amorphous silicon layer created in crystalline silicon bombarded with 100 keV carbon ions with a fluence of 5 × 1017 ions/cm2 during subsequent high temperature annealing is studied by Raman and Brillouin light scattering.Irradiation of tin-doped indium oxide (ITO) films with 1 MeV protons with fluences from 1 × 1015 to 250 × 1015 ions/cm−2 induces visible darkening over a broad spectral region that shows three stages of development. This is attributed to the formation of defect clusters by a model of defect growth and also high fluence optical absorption studies. X-ray diffraction studies show evidence of a strained lattice after the proton bombardment and recovery after long period storage. The effects are attributed to the annealing of the defects produced.  相似文献   

8.
Highly tensile strained InGaAs/InP multi quantum wells have been grown by the LP-MOVPE technique. Such samples were subjected to irradiation with 100 MeV Au8+ ions. These were studied as a function of fluence, then the irradiated samples were annealed by rapid thermal annealing at 700 °C for 60 s in nitrogen atmosphere. We used high resolution X-ray diffraction (HRXRD), photoluminescence (PL) and atomic force microscopy (AFM) characterization techniques to study the interfacial induced changes, band gap modifications and surface morphology. Multi quantum wells were then studied before and after irradiation.  相似文献   

9.
RbCl:Eu2+ single crystals which are co-doped with thallium display characteristic Eu2+ emission around 420 nm and additional emission band at 312 nm with a weak shoulder around 390 nm attributable to centers involving Tl+ ions. Additional excitation and emission bands observed in Tl+ doped RbCl:Eu2+ single crystals are attributed to the presence of Eu2+ aggregates and complex centres involving both Eu2+ and Tl+ ions. Inclusion of Tl+ ions in RbCl:Eu2+ crystals is found to enhance the intensity of Eu2+ emission at 420 nm due to an energy transfer from Tl+ → Eu2+ ions.  相似文献   

10.
The structural evolution of silicon oxide films with Ge+ implantation was traced with a positron beam equipped with positron annihilation Doppler broadening and lifetime spectrometers. Results indicate that the film structure change as a function of the annealing temperature could be divided into four stages: (I) T < 300 °C; (II) 300 °C ? T ? 500 °C; (III) 600 °C ? T ? 800 °C; (IV) T ? 900 °C. In comparison with stage I, the increased positron annihilation Doppler broadening S values during stage II is ascribed to the annealing out of point defects and coalescence of intrinsic open volumes in silicon oxides. The obtained long positron lifetime and high S values without much fluctuation in stage III suggest a rather stable film structure. Further annealing above 900 °C brings about dramatic change of the film structure with Ge precipitation. Positron annihilation spectroscopy is thereby a sensitive probe for the diagnosis of microstructure variation of silicon oxide thin films with nano-precipitation.  相似文献   

11.
Ion irradiation is an effective method to control the morphology, size and distribution of metal nanoclusters in substrates. In this work, Ag nanoclusters embedded in silica by 200 keV Ag+ ion implantation were irradiated at room temperature with Ar+ ions at 200 keV and 500 keV to different fluences. After irradiation, a transmission electron microscopy (TEM) study revealed that nanovoids are formed in the larger Ag nanoclusters. With the increase of fluence and energy of the Ar+ ions, the number and average size of the nanovoids grow combining with increases in the average size of the larger Ag nanoclusters within a projected range. During the ion irradiation process, the electronic energy and nuclear energy loss of the Ar+ ions determine the size of the hollow Ag nanoclusters and the change of the size and distribution of Ag nanoclusters in silica, leading to changes in the optical absorption spectra.  相似文献   

12.
X-ray diffraction (XRD), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and photoluminescence (PL) were applied to study yellow and red luminescence properties of as-grown and Mg-implanted n-type wurtzite GaN films grown on sapphire substrates by metal-organic chemical vapor deposition. The influence of different Mg-implanted fluences on yellow and red luminescence was studied. The as-grown GaN thin films exhibited intense broad yellow emission which reduces drastically after Mg ion implantation. A red luminescence band at approximately 750 nm appears when the Mg implantation fluence is low (1013 cm−2) whereas a yellow luminescence band suddenly increases at a Mg-implanted fluence of 1016 cm−2. The possible reasons of these phenomena are discussed.  相似文献   

13.
TiO2 thin films were prepared by direct current magnetron sputtering on glass substrates, then were implanted by cobalt ions, and finally annealed at 400 and 500 °C for 50 min, respectively. They were identified as an anatase structure by X-ray diffraction (XRD). Scanning electron microscope (SEM) images showed that the grain sizes of the films grow with increasing annealing temperature. The energy dispersive X-ray (EDX) measurements indicated that the ratio of the cobalt atoms number and total atoms number of cobalt and titanium in the Co-TiO2 films was about 2.51%, and X-ray photoelectron spectroscopy (XPS) results revealed that the cobalt existed in the films as Co2+. The element distribution of cobalt along cross-section of the films was studied by EDX, as the results showed that the cobalt diffused deeply into the films after annealing. The high resolution transmission electron microscopy (HRTEM) images were used to affirm the anatase structure of the Co-TiO2 films, and edge dislocations were further found in the HRTEM images, which could be attributed to the effect of the implantation.  相似文献   

14.
Ag ions with four kinds of energies were implanted into silica to doses of 5 × 1016 and 1 × 1017 ions/cm2, respectively. Hollow Ag nanoclusters were observed in the 1 × 1017 Ag+ ions/cm2 implanted samples with energies of 150 and 200 keV. The evolution of hollow nanoclusters during annealing was carried out by in situ transmission electron microscopy observation. The energy dependence for the formation of hollow nanoclusters is studied. A potential mechanism for the formation of irradiation-induced nanovoids in nanoclusters is discussed.  相似文献   

15.
Cesium ions were implanted at the energy of 300 keV in YSZ at 300 and 1025 K, with increasing fluences up to 5 × 1016 cm−2. Concentration profiles were determined by Rutherford Backscattering Spectrometry (RBS) measurements. Transmission Electron Microscopy (TEM) experiments were achieved to determine the nature of the damages and to characterize a predicted ternary phase of cesium zirconate. At 300 K, amorphization occurs at high Cs-concentration (9 at.%) due to a chemical effect. TEM investigations performed after in situ post-annealing shows the recrystallization of YSZ concurrently with the cesium release. No precipitation of secondary phases was observed after annealing. With implantation performed at 1025 K, dislocation loops and bubbles were formed but the structure did not undergo amorphization. Dislocation rearrangement leads to the polygonization of the matrix. The cesium concentration reaches a saturation value of 1.5 at.%, and once more no precipitation is observed.  相似文献   

16.
Luminescence studies of CaS:Bi nanocrystalline phosphors synthesized by wet chemical co-precipitation method and irradiated with swift heavy ions (i.e. O7+-ion with 100 MeV and Ag15+-ion with 200 MeV) have been carried out. The samples have been irradiated at different ion fluences in the range 1 × 1012-1 × 1013 ions/cm2. The average grain size of the samples before irradiation was estimated as 35 nm using line broadening of XRD (X-ray diffraction) peaks and TEM (transmission electron microscope) studies. Our results suggest a good structural stability of CaS:Bi against swift heavy ion irradiation. The blue emission band of CaS:Bi3+ nanophosphor at 401 nm is from the transition 3P→ 1S0 of the Bi3+. We have observed a decrease in lattice constant (a) and increase of optical energy band gap after ion irradiation. We presume this change due to grain fragmentation by dense electronic excitation induced by swift heavy ion. We have studied the optical and luminescent behavior of the samples by changing the ion energy and also by changing dopant concentration from 0.01 mol% to 0.10 mol%. It has been examined that ion irradiation enhanced the luminescence of the samples.  相似文献   

17.
Optically-active silica nanowires are produced by metal-induced growth on silicon substrates using ion-implantation, with two different strategies employed for their fabrication. The first is based on Er implantation of nanowires produced by a thin-film Pd catalyst layer, and the second employing implanted Er as both the catalyst and dopant. The luminescence properties of the resulting Er-doped silica nanowires are reported and compared with similarly implanted fused silica samples. Comparison shows that the luminescence lifetime of Er is increased by incorporation within the nanowires due to a reduction in the density of available optical states in these structures. Additional details of the synthesis, structure and properties of these functionalised nanowires are also presented.  相似文献   

18.
The large-area, high-density of ∼1-2 × 109/cm2 silicon nanocone arrays by ion-irradiation with incident angle of 75° have been achieved by using carbon-cone-mask. The scanning electron microscopy (SEM) images show that the width of silicon nanocones is ∼150 nm and the height is ∼400 nm. The investigation of SEM shows that the formation of the silicon nanocones proceeds through three periods, carbon nanocones-nanocones with carbon on the top and silicon at the bottom-silicon nanocones.  相似文献   

19.
The development of a molecular dynamics method simulating the propagation of acoustic waves allowed their propagation velocities to be measured in borosilicate glasses. The qualitative results obtained in glass irradiated by heavy ions correctly reproduces the experimental results, i.e. a reduction in the acoustic wave propagation velocity in irradiated glass. These changes in the mechanical properties were correlated with structural changes, in particular increased disorder in the glass. The greater disorder results in broadening of the characteristic distributions of the glass: distances, angles, and ring sizes. Similarities were clearly observed between the effects of irradiation and the effects of higher quenching rates on the acoustic wave propagation velocities. An additional study of glass artificially expanded by homothetic volume transformation shows that a reduction in acoustic velocity is not necessarily associated with swelling. The artificial volume change combined with increased stresses in the glass results in higher acoustic velocities.  相似文献   

20.
The band-structure, interface and surface modification by swift heavy ion irradiation of In0.55Ga0.45As/InP multi quantum wells have been studied using photoluminescence, high resolution X-ray diffraction and atomic force microscopy. Three distinct photoluminescence peaks were observed for as-grown samples at low temperature and at room temperature the peaks merge together. Detailed analysis has been carried out to understand the origin of additional satellite peaks. A peak shift of about 23 nm was observed for irradiated samples after annealing. Highly-ordered satellite peaks were observed in X-ray scans of as-grown and Ag ion irradiated samples. In comparison, Au ion irradiated sample showed stronger interfacial degradation as seen by the diminished satellite peaks. The peak position of the irradiated samples shifted to the compressive side and was broadened in comparison with as-grown samples. The as-grown and annealed samples show smooth surfaces whereas irradiation results in nano-sized dot/island types of structures at the surface. The results are discussed in the light of complementary information provided by these techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号