共查询到20条相似文献,搜索用时 22 毫秒
1.
Bar-Cohen A. Iyengar M. 《Components and Packaging Technologies, IEEE Transactions on》2003,26(1):16-25
The development of heat sinks for microelectronic applications, which are compatible with sustainable development, involves the achievement of a subtle balance between a superior thermal design, minimum material consumption, and minimum pumping power. This presentation explores the potential for the least-energy optimization of natural and forced convection cooled rectangular plate heat sinks. The results are evaluated in terms of a heat sink coefficient of performance, relating the cooling capability to the energy invested in the fabrication and operation of the heat sink, and compared to the entropy generation minimization methodology (EGM). 相似文献
2.
Krueger W.B. Bar-Cohen A. 《Components and Packaging Technologies, IEEE Transactions on》2004,27(2):417-425
The objective of this paper is to describe the development of a computationally efficient computer-aided design (CAD) method, which uses a finite element numerical model (FEM) coupled with empirical correlations, to create an optimum heat sink design, subject to multiple constraints. A thermal optimization "challenge" problem, representative of anticipated heat sink requirements in the near future, is solved to demonstrate the proposed methodology. Particular emphasis is placed upon micro-processor central processing unit (CPU) chip cooling applications where, in addition to thermal requirements, the heat sink design specification includes constraints upon size, total mass, and air coolant pressure drop across the heat sink. 相似文献
3.
Bahadur R. Bar-Cohen A. 《Components and Packaging Technologies, IEEE Transactions on》2005,28(2):238-246
The design and optimization methodology of a thermally conductive polyphenylene sulphide (PPS) polymer staggered pin fin heat sink, for an advanced natural convection cooled microprocessor application, are described using existing analytical equations. The geometric dependence of heat dissipation and the relationships between the pin fin height, pin diameter, horizontal spacing, and pin fin density for a fixed base area and excess temperature are discussed. Experimental results of a pin finned thermally conductive PPS heat sink in natural convection indicate substantially high thermal performance. Numerical results substantiate analytical modeling results for heat sinks within the Aihara et al. fin density range. The cooling rates and coefficient of thermal performance, COP/sub T/, that relates cooling capability to the energy invested in the formation of the heat sink, has been determined for such heat sinks and compared with conventional aluminum heat sinks. 相似文献
4.
Optimal design methodology of plate-fin heat sinks for electronic cooling using entropy generation strategy 总被引:3,自引:0,他引:3
This paper presents a formal systematic optimization process to plate-fins heat sink design for dissipating the maximum heat generation from electronic component by applying the entropy generation rate to obtain the highest heat transfer efficiency. The design investigations demonstrate the thermal performance with horizontal inlet cooling stream is slightly superior to that with vertical inlet cooling stream. However, the design of vertical inlet stream model can yield to a less structural mass (volume) required than that of horizontal inlet stream model under the same amount of heat dissipation. In this paper, the constrained optimization of plate-fins heat sink design with vertical inlet stream model is developed to achieve enhanced thermal performance. The number of fins and the aspect ratio are the most responsive factors for influencing thermal performances. The heat sink used on AMD Thunderbird 1-GHz processor has been examined and redesigned by presenting optimization methodology. The optimal thermal analysis has a very good agreement to the both of vendors' announced information and using simulation of parabolic hyperbolic or elliptic numerical integration code series (PHOENICS). The optimum design that minimizes entropy generation rate in this paper primarily applied three criteria for plate-fins heat sink optimal design: formal constrained nonlinear programming to obtain the maximum heat dissipation; prescribed heat dissipation; prescribed surface temperature. As a result, the thermal performance can be notably improved; both the sink size and structural mass can apparently be reduced through the presented design method and process. This analysis and design methodology can be further applied to other finned type heat sink designs. 相似文献
5.
This paper presents an optimization study of multichannel heat sinks for electronic devices. Specifically, we present a method of determining optimum values of the channel diameter, flow rate and number of channels for minimum pumping power or minimum pressure drop. Optimized parameters are expressed in dimensionless form. The calculated results for both laminar and turbulent regimes present several important relationships among the parameters. A criterion for choice of the flow regime to be used is presented. For a current electronic cooling requirement, the optimized diameter of a channel lies in the micro-scale range when water is used as working fluid. Several advantages of an optimized heat sink and its' feasibility toward actual cooling problems are discussed 相似文献
6.
Bar-Cohen A. Iyengar M. 《Components and Packaging Technologies, IEEE Transactions on》2002,25(4):584-591
The development of heat sinks for microelectronic applications, which are compatible with sustainable development, involves the achievement of a subtle balance between a superior thermal design, minimum material consumption, and minimum pumping power. Due to the rapid proliferation of electronic systems, substantial material streams and energy consumption rates are associated with the cooling of computers, as well as other categories of electronic equipment. This presentation explores the potential for the least-energy optimization of natural- and forced-convection cooled rectangular plate heat sinks. The results are evaluated in terms of a heat sink coefficient of performance, relating the cooling capability to the energy invested. Guidelines for "sustainable" heat sink designs are suggested. 相似文献
7.
8.
9.
《Electron Devices, IEEE Transactions on》1984,31(9):1218-1221
A novel structure for cooling silicon chips involving passage of water through fins etched in the back of the chips has recently been described in the literature. The properties of silicon and the nature of the structure are such that approximations that allow an analytic solution to the heat transfer problem in the structure can be introduced. Formulas for the fin and channel dimensions that provide optimum cooling under various conditions can then be derived. The results are also presented in graphical form and by means of examples. 相似文献
10.
Octavio A. Leon Gilbert De Mey Erik Dick Jan Vierendeels 《Microelectronics Reliability》2004,44(7):1482-1187
The effect of aerodynamic shaping of the cooling fins in staggered heat sinks is numerically studied. It is shown that by rounding the cooling fins, the aerodynamic efficiency is increased without affecting the thermal efficiency. Three different geometries (in-line rectangular, staggered rectangular and rounded staggered shape) have been compared. These three different layouts were studied to obtain the best ratio between the removed heat and the energy spent to drive the coolant flow through the cooling fins. The main purpose of the paper is to determine the influence of the rounded shape on the average performance. As an example, it was found that a rounded staggered fin layout removes the same heat for an incident air velocity of 4 m/s as a classical in-line fin layout with a higher air speed of 6 m/s, with a reduction of fan power consumption by more than 60%. 相似文献
11.
《Electron Devices, IEEE Transactions on》1970,17(9):739-743
This paper presents calculated and experimental results which demonstrate that the performance of IMPATT diodes is significantly improved by the use of diamond heat sinks. Oscillator test results on germanium IMPATT diodes at 6.2 GHz indicate about 50 to 100 percent increase in power output for diamond versus copper heat-sinked units without compromising other oscillator characteristics. An increase in thermal conductance of about 40 percent is realized for diodes mounted on selected high-conductivity diamonds compared to units mounted on copper. Considerations of IMPATT wafer design for optimum power performance on high thermal conductance heat sinks are discussed. Thermal conductivity of naturally occurring diamonds ranges from 1.0 to 5.0 times that of copper which necessitates selection of stones to realize maximum thermal conductance. This paper presents the results of a study of diamond thermal conductivity, its measurement, and its relationship to diamond optical properties. The dependence of diode thermal conductance on die area for diamond heat-sinked devices has been obtained by computer solution of the heat flow equations for the relevant geometries. These calculations have been corroborated by measurement of the thermal conductance of diodes with various die diameters. 相似文献
12.
Narasimhan S. Bar-Cohen A. Nair R. 《Components and Packaging Technologies, IEEE Transactions on》2003,26(1):136-146
Growing complexity of electronic systems has resulted in an increased computational effort in CFD modeling of electronic systems. To reduce the computational effort, one or several heat sinks can be represented by a compact "porous block" model, with an effective thermal conductivity and pressure loss coefficient. In this study of parallel plate heat sinks in laminar forced convection, a methodology is developed to rigorously determine the thermal properties of compact heat sink models that provide a high level of accuracy. The results of an extensive set of CFD simulations for a three heat sink channel covering two distinct heat sink geometries, air velocities from 0.25 m/s to 2 m/s and various spacings between the heat sinks, were used to create and evaluate the fidelity of compact models. The results of this study establish the validity and value in using the porous block compact model representation for noncritical heat sinks in an electronic assembly. The results also reveal that a location-independent porous-block representation can yield excellent agreement in the prediction of the thermal characteristics of state-of-the-art heat sinks. 相似文献
13.
W.B. Joyce 《Solid-state electronics》1975,18(4):321-322
Kirchhoff's transformation is summarised in a form appropriate for semiconductor-device heat sinks and then illustrated with a brief application to the thermal resistance of a GaAs laser. Under the most common semiconductor boundary conditions his transformation immediately converts the steady-state linear temperature rise (based on a temperature-independent conductivity σ0) of a uniform heat sink of any shape into the nonlinear rise [based on a temperature-dependent conductivity σ(T) of any functional form]. 相似文献
14.
Missaggia L.J. Walpole J.N. Liau Z.L. Phillips R.J. 《Quantum Electronics, IEEE Journal of》1989,25(9):1988-1992
The operation of a two-dimensional GaInAsP/InP diode laser array with CW power dissipation up to 500 W/cm2 into a Si microchannel heat sink is discussed. The approximately 1×4-mm2 laser array was used to characterize the heat sink, and the value of 0.040°C cm2/W was obtained for the thermal resistance per unit area. The extrapolated value for a 1-cm2 heated area is 0.070°C cm2/W 相似文献
15.
A micromachined Pirani gauge with dual heat sinks 总被引:1,自引:0,他引:1
This paper reports a micromachined Pirani gauge with dual heat sinks that can be integrated with microelectromechanical systems (MEMS) devices inside a vacuum package to monitor long-term pressure changes and stability inside the package. The Pirani gauge utilizes small gaps (<1 /spl mu/m) between its heater and two thermal heat sinks to obtain large dynamic range (20 mtorr to 2 torr) and high sensitivity (3.5/spl times/10/sup 5/ (K/W)/torr). The gauge is 2/spl times/2 mm/sup 2/ in size, is fabricated using the dissolved wafer process (DWP) on a glass substrate, and utilizes dielectric bridges for signal routing. Measurements show the low end of the dynamic range can be extended by reducing the gap distance between the heater and thermal sinks, which matches well with analytical modeling. This gauge shows an uncertainty of 50 /spl mu/torr and a detectable leak rate of 3.1/spl times/10/sup -16/ cm/sup 3//s, assuming a common micropackage volume of 1.6/spl times/10/sup -5/ cm/sup 3/, which represents at least four orders of magnitude improvement over traditional leak testing. 相似文献
16.
17.
Beset by time-to-market pressures, designers often neglect the thermal requirements of their products and then have to resort to costly after-the-fact fixes. From the standpoint of the system as a whole, thermal management or thermal design has to take all of the components and the operating environment as well into account. The author discusses early and effective steps to take for managing thermal design. These are: look at the system as a whole; define heat sink requirements; choosing a heat sink; selecting a thermal interface material; and computer modelling of the system 相似文献
18.
Khan W.A. Culham J.R. Yovanovich M.M. 《Components and Packaging Technologies, IEEE Transactions on》2005,28(2):247-254
In this study, an entropy generation minimization, EGM, technique is applied as a unique measure to study the thermodynamic losses caused by heat transfer and pressure drop in cylindrical pin-fin heat sinks. The use of EGM allows the combined effect of thermal resistance and pressure drop to be assessed through the simultaneous interaction with the heat sink. A general expression for the entropy generation rate is obtained by considering the whole heat sink as a control volume and applying the conservation equations for mass and energy with the entropy balance. Analytical/empirical correlations for heat transfer coefficients and friction factors are used in the optimization model, where the characteristic length is used as the diameter of the pin and reference velocity used in Reynolds number and pressure drop is based on the minimum free area available for the fluid flow. Both in-line and staggered arrangements are studied and their relative performance is compared on the basis of equal overall volume of heat sinks. It is shown that all relevant design parameters for pin-fin heat sinks, including geometric parameters, material properties and flow conditions can be simultaneously optimized. 相似文献
19.
Culham J.R. Muzychka Y.S. 《Components and Packaging Technologies, IEEE Transactions on》2001,24(2):159-165
The specification and design of heat sinks for electronic applications is not easily accomplished through the use of conventional thermal analysis tools because “optimized” geometric and boundary conditions are not known a priori. A procedure is presented that allows the simultaneous optimization of heat sink design parameters based on a minimization of the entropy generation associated with heat transfer and fluid friction. All relevant design parameters for plate fin heat sinks, including geometric parameters, heat dissipation, material properties and flow conditions can be simultaneously optimized to characterize a heat sink that minimizes entropy generation and in turn results in a minimum operating temperature. In addition, a novel approach for incorporating forced convection through the specification of a fan curve is integrated into the optimization procedure, providing a link between optimized design parameters and the system operating point. Examples are presented that demonstrate the robust nature of the model for conditions typically found in electronic applications. The model is shown to converge to a unique solution that gives the optimized design conditions for the imposed problem constraints 相似文献
20.
《Microelectronics Journal》2014,45(12):1740-1745
The thermal management of semiconductor devices is still a hot topic. Most designers, who are aware of the thermal aspects of IC design, know that new, cheaper and more efficient methods are required to keep the temperature of electronic systems low. Research by different teams regarding the cooling of stacked die structures is in progress.In this paper an improved thermal characterization method will be presented to determine the flow dependent partial thermal resistance of integrated microchannel based heat sinks. This reliable characterization method does not demand thermal isolation during the measurements, only constant environment conditions. The measurements are based on the industrial standard thermal transient testing method.On the other hand we present an approach to realize an integrated microfluidic channel based heat sink, which can be realized in the backside of the silicon chip itself. The approach is based on a cheap wet etching process instead of reactive ion etching or LIGA technologies, which enables batch processing. 相似文献