首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
采用传统固相法制备了新型(1-x)Bi0.5(Na0.8K0.2)0.5TiO3-x(Bi1-yLay)FeO3无铅压电陶瓷,利用了XRD、SEM等测试技术表征了该陶瓷的晶体结构、表面形貌、介电和压电性能.研究结果表明,在所研究的组成范围内陶瓷材料均能形成纯的钙钛矿结构固溶体,陶瓷晶粒尺寸随x、y的增加而增加.压电性能随x的增加先增加后减少,随y的增加先减小后增大,在x=0.005,y=0.9时,压电常数及机电耦合系数达到最大值(d33=149 pC/N,kp=0.27).  相似文献   

2.
采用传统固相合成法制备了BiCrO3掺杂Na0.5K0.5NbO3无铅压电陶瓷。借助XRD、SEM等手段对该陶瓷的显微结构与电性能进行了研究。结果表明,当BiCrO3掺杂量为0.2%~1.0%(摩尔分数),样品均为ABO3型钙钛矿结构。当BiCrO3掺杂量为0.4%(摩尔分数)时,所得陶瓷样品具有最优综合电性能,其压电常数d33、机电耦合系数kp、机械品质因素Qm、斜方–四方相变温度tO-T和居里温度tC分别为138pC/N,0.32,30,175℃和410℃。  相似文献   

3.
利用传统固相合成法制备了(1-x)Na0.5K0.5NbO3-xBiNiO3 ( (1-x)NKN- xBN) 无铅压电陶瓷.采用X-射线衍射(XRD)、扫描电镜(SEM)等手段对其显微结构与性能进行研究.结果表明,该体系所研究组分范围内均能形成典型的ABO3型钙钛矿结构,在x=0.006~0.008间存在准同型相界(MPB).体系主要压电性能在x=0.008左右获得优化,其压电常数d33和机电耦合系数kp 均达到极大值(分别为135 pC/N和44%), 机械品质因数Qm为122,正交-四方转变温度TO-T和居里温度TC分别为155 ℃和385 ℃.  相似文献   

4.
采用烧成法制备了xCa_(0.8)Sr_(0.2)TiO_3-(1-x)Li_(0.5)La_(0.5)TiO_3(CST-LLT)(x=0.4~0.8)系介质陶瓷,表征了其物相组成、结构特征及介电性能。所制备的材料具有钙钛矿结构特征,随着Li_(0.5)La_(0.5)TiO_3组分的减少,1 170~1 260℃烧结的CST-LLT陶瓷介电常数(ε_r)变化范围在154.8~275.2,而品质因数(Q·f)在1 360~1 479GHz内先增加后逐渐减小,谐振频率温度系数(τ_f)变化范围为(-720.6~470.5)×10~(-6)/℃。当x=0.5,烧成温度为1 200℃,保温3h时,可得到理想的介电性能的介质陶瓷:ε_r=230,Q·f=1 455GHz,τ_f=24.5×10~(-6)/℃。  相似文献   

5.
以准同型相界组成Bi0.5(Na0.82K0.18)0.5TiO3(BNT)为基础配方,In2O3为改性剂,研究了In2O3掺杂量对Bi0.5(Na0.82K0.18)0.5TiO3无铅陶瓷晶体结构和电性能的影响。XRD分析表明,所有样品的相结构均为纯钙钛矿固溶体。陶瓷的晶粒尺寸随掺杂量的增加而增加。介电常数-温度曲线显示陶瓷具有两个介电反常峰tf和tm,在tm的介电常数εm随掺杂量的增加而下降,tf和tm都随掺杂量的增加向高温移动。当In2O3摩尔分数为0.1%时,压电性能达最大值:d33=141pC/N,kp=0.32。  相似文献   

6.
采用以聚乙烯醇为聚合剂的湿化学方法合成制备了K0.5Bi0.5(Ti1–2xCuxMox)O3(x=0.01,0.06)陶瓷材料。利用X射线衍射、扫描电子显微镜、电阻–温度测试和交流阻抗谱分析对材料的微观组织和热敏特性进行了表征。结果表明:Cu/Mo共掺的K0.5Bi0.5TiO3陶瓷具有钙钛矿结构,并呈现明显的PTC效应;K0.5Bi0.5(Ti0.88Cu0.06Mo0.06)O3陶瓷的居里点为155℃,室温电阻为1 454,升阻比为2.62个数量级。材料的PTC效应主要来源于晶界电阻效应,遵循Heywang模型。  相似文献   

7.
Sm_(0.9)Sr_(0.1)FeO_3的制备及其气敏性能   总被引:1,自引:1,他引:1  
用Sr对SmFeO3进行A位掺杂,用柠檬酸盐sol-gel法制得Sm0.9Sr0.1FeO3粉体。对其进行XRD表征,并制成气敏元件。采用静态配气法测试其气敏性能。结果表明:该粉体为斜方晶系钙钛矿结构,平均晶粒尺寸约为25nm。在空气中的电导较SmFeO3高50倍左右,最佳工作温度下降160℃。在220℃的最佳工作温度下,气敏元件对体积分数为5×10–4乙醇的灵敏度高达56,且其选择性好,响应–恢复时间分别为40s和50s,有望开发成为对乙醇检测的气敏材料。  相似文献   

8.
采用传统固相法制备了一类新型的A位多重复合钛酸铋钠(Bi0.5Na0.5)TiO3,BNT)基无铅压电陶瓷[Bi05(Na1-x-yKxAgy)0.s]1-xBazTiO3(BNKABT-x-y-z).研究了K+、Ag+、Ba2含量对陶瓷微观结构和电学性能的影响.结果表明,在所研究的组成范围内,陶瓷样品均形成了单一的钙...  相似文献   

9.
己采用了液相外延(LPE)生长的p-型Pb_(0.8)/p-型Pb_(0.8)Sn_(0.2)Te(PbTe在Pb_(0.8)Sn_(0.2)Te上面)作为双色(3~5和8~14微米)探测器的衬底。用平面扩散技术在液相外延生长衬底上形成二极管。文中并描述了在80K下工作的12元阵列在标称300K、2π视场背景时所表现的特性。六个Pb_(0.8)Sn_(0.2)Te二极管和六个PbTe二极管的平均探测度分别为2.2×10~(10)和1.0×10~(11)厘米·赫~(1╱2)/瓦。  相似文献   

10.
无机材料纳米枝杈晶的合成成为最近几年纳米材料合成的热点之一。以Ti(SO4)2和Sr(NO3)2为原料,以KOH为矿化剂,在没有采用任何模板和表面活性剂的条件下,首次采用水热法在0.1mol/LKOH200℃保温4h条件下成功制备出了SrTiO3枝杈晶。用X射线衍射(XRD)和透射电镜(TEM)对制备出的产物结构和形貌进行了表征。结果表明,在水热反应初期,首先生成了大量的直径约为5nm的TiO2纳米球形颗粒,随着反应的继续进行,TiO2纳米颗粒逐渐减少直至消失,最终得到SrTiO3枝杈晶。所采用的水热合成方法可以用来合成其他钙钛矿氧化物,是一种非常有前途的纳米枝杈晶的制备方法。  相似文献   

11.
Researchers have recently revealed that hybrid lead halide perovskites exhibit ferroelectricity, which is often associated with other physical characteristics, such as a large nonlinear optical response. In this work, the nonlinear optical properties of single crystal inorganic–organic hybrid perovskite CH3NH3PbBr3 are studied. By exciting the material with a 1044 nm laser, strong two‐photon absorption‐induced photoluminescence in the green spectral region is observed. Using the transmission open‐aperture Z‐scan technique, the values of the two‐photon absorption coefficient are observed to be 8.5 cm GW?1, which is much higher than that of standard two‐photon absorbing materials that are industrially used in nonlinear optical applications, such as lithium niobate (LiNbO3), LiTaO3, KTiOPO4, and KH2PO4. Such a strong two‐photon absorption effect in CH3NH3PbBr3 can be used to modulate the spectral and spatial profiles of laser pulses, as well as to reduce noise, and can be used to strongly control the intensity of incident light. In this study, the superior optical limiting, pulse reshaping, and stabilization properties of CH3NH3PbBr3 are demonstrated, opening new applications for perovskites in nonlinear optics.  相似文献   

12.
Organic–inorganic hybrid perovskite solar cells are attracting the attention of researchers owing to the high level of performance they exhibit in photovoltaic device applications. However, the attainment of an even higher level of performance is hindered by their anomalous current–voltage (IV) hysteresis behavior. Even though experimental and theoretical studies have suggested that the perovskite materials may have a ferroelectric nature, it is still far from being fully understood. In this study, the origin of the hysteresis behavior in CH3NH3PbI3 perovskite thin films is investigated. The behavior of ferroelectricity using piezoresponse force microscopy is first examined. Then, by comparing the scan‐rate‐dependent nano/macroscopic IV curves, it is found that ion migration assisted by the grain boundaries is a dominant origin of IV hysteresis from a macroscopic viewpoint. Consequently, the observations suggest that, even though ferroelectricity exists in the CH3NH3PbI3 perovskite materials, ion migration primarily contributes to the macroscopic IV hysteresis. The presented results can provide fundamental guidelines to the resolution of hysteresis issues in organic–inorganic hybrid perovskite materials.  相似文献   

13.
Perovskite‐based solar cells are generally assembled as planar structures comprising a flat organoammonium metal halide perovskite layer, or mesoscopic structures employing a mesoporous metal‐oxide scaffold into which the perovskite material is infiltrated. To present, little attention has been directed toward the texturing of the perovskite material itself. Herein, a textured CH3NH3PbI3 morphology formed through a thin mesoporous TiO2 seeding layer and a gas‐assisted crystallization method is reported. The textured morphology comprises a multitiered nanostructure, which allows for significant improvements in the light harvesting and charge extraction performance of the solar cells. Due to these improvements, average short‐circuit current densities for a batch of 28 devices are in excess of 22 mA cm?2, and the maximum recorded power conversion efficiency is 16.3%. The performance gains concomitant with this textured CH3NH3PbI3 morphology provide further insights into how control of the perovskite microstructure can be used to enhance the cell performance.  相似文献   

14.
15.
The complex refractive index of fluorinated subphthalocyanines (SubPcs) deposited by vacuum sublimation is determined by spectral ellipsometry. Their performance as acceptor material is characterized in a range of donor/acceptor heterojunctions in organic photovoltaic cells (OPVCs) by current–voltage measurements under 1 sun AM 1.5D simulated solar illumination and spectral response. Both electron and hole transfer between donor and acceptor materials is demonstrated. Power conversion efficiencies of 0.96% are found with an open‐circuit bias of 940 mV. Hence, it is shown that fluorinated SubPcs can be considered as an acceptor material in OPVCs with an absorption in the visible comparable to that of well‐known metallophthalocyanines.  相似文献   

16.
While Sn? Pb alloyed perovskites have been considered as an effective approach to broaden the absorption spectrum, it is still challenging to modify the crystallization (and thus morphology, crystallinity, and orientation) in a controllable manner and thus boost the efficiency of Sn? Pb alloyed perovskite solar cells. Here, it is unveiled that controlling the crystallization of CH3NH3Sn0.25Pb0.75I3 films can be simply realized by adjusting the amount of dimethyl sulfoxide in precursors, which has not been reported in Sn? Pb alloyed perovskite systems. The remarkable perovskite crystallinity enhancement by the 20‐fold enhanced (110) plane intensity in the X‐ray diffraction spectrum of CH3NH3Sn0.25Pb0.75I3 and the preferred (110) orientation with the texture coefficient enhanced by 2.6 times to reach 0.88 are demonstrated. Importantly, it is discovered that the introduction of dimethyl sulfoxide avoids the formation of the colloidal coagulation observed in prolonged‐storage precursors and ameliorates inhomogeneous Sn/Pb distributions in resultant perovskite films. Through optimizing perovskite films and device structures, hysteresis‐free planar‐heterojunction CH3NH3Sn0.25Pb0.75I3 solar cells with the efficiency reaching 15.2%, which are the most efficient Sn? Pb alloy‐based perovskite solar cells, are achieved.  相似文献   

17.
介绍了SrBi2Ta2O9系列层状钙钛矿铁电薄膜的结构、性能、制备方法以及研究进展。  相似文献   

18.
In this work, a new method of fabricating organolead halide perovskite CH3NH3PbI3 thin film by unisource thermal evaporation was proposed, which ensured high‐quality film with composition, crystal‐structure homogeneity, full surface coverage, well‐defined grain structure, high crystalline, and reproducibility, suggesting its promising applicability for significant optimization in efficient. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The organic–inorganic halide CH3NH3PbI3 (MAPbI3) has been the most commonly used light absorber layer of perovskite solar cells (PSCs); however, solution‐processed MAPbI3 films usually suffer from random crystal orientation and high trap density, resulting in inferior power conversion efficiency (PCE) with open circuit voltage (Voc) being typically below 1.2 V for PSC devices. Herein, for the first time an imidazole sulfonate zwitterion, 4‐(1H‐imidazol‐3‐ium‐3‐yl)butane‐1‐sulfonate (IMS), is applied as a bifunctional additive in regular‐structure planar heterojunction PSC devices to regulate the crystal orientation, yielding highly ordered MAPbI3 film and passivating the trap states of the film. Such a dual effect of IMS is fulfilled via coordination interactions between the sulfonate moiety of IMS with the Pb2+ ion and the electrostatic interaction between the imidazole of IMS with the I ion of MAPbI3. As a result, under a optimized IMS doping ratio of 0.5 wt%, the PSC device exhibits a significant increase in PCE from 18.77% to 20.84%, with suppressed current–voltage hysteresis and promoted ambient stability. Moreover, a high Voc of 1.208 V is achieved under a higher IMS doping ratio of 1.2 wt%, which is the highest Voc for regular‐structure MAPbI3 planar PSC devices based on TiO2 electron transport layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号