首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
This paper presents a calibration and correction method for detector cell gain variations. A key functionality of current CT scanners is to offer variable slice thickness to the user. To provide this capability in multislice volumetric scanners, while minimizing costs, it is necessary to combine the signals of several detector cells in z, when the desired slice thickness is larger than the minimum provided by a single cell. These combined signals are then pre-amplified, digitized, and transmitted to the system for further processing. The process of combining the output of several detector cells with nonuniform gains can introduce numerical errors when the impinging x-ray signal presents a variation along z over the range of combined cells. These numerical errors, which by nature are scan dependent, can lead to artifacts in the reconstructed images, particularly when the numerical errors vary from channel-to-channel (as the filtered-backprojection filter includes a high-pass filtering along the channel direction, within a given slice). A projection data correction algorithm has been developed to subtract the associated numerical errors. It relies on the ability of calibrating the individual cell gains. For effectiveness and data flow reasons, the algorithm works on a single slice basis, without slice-to-slice exchange of information. An initial error vector is calculated by applying a high-pass filter to the projection data. The essence of the algorithm is to correlate that initial error vector, with a calibration vector obtained by applying the same high-pass filter to various z combinations of the cell gains (each combination representing a basis function for a z expansion). The solution of the least-square problem, obtained via singular value decomposition, gives the coefficients of a polynomial expansion of the signal z slope and curvature. From this information, and given the cell gains, the final error vector is calculated and subtracted from the projection data.  相似文献   

5.
Schmidt TG  Fahrig R  Pelc NJ 《Medical physics》2005,32(11):3234-3245
An inverse-geometry volumetric computed tomography (IGCT) system has been proposed capable of rapidly acquiring sufficient data to reconstruct a thick volume in one circular scan. The system uses a large-area scanned source opposite a smaller detector. The source and detector have the same extent in the axial, or slice, direction, thus providing sufficient volumetric sampling and avoiding cone-beam artifacts. This paper describes a reconstruction algorithm for the IGCT system. The algorithm first rebins the acquired data into two-dimensional (2D) parallel-ray projections at multiple tilt and azimuthal angles, followed by a 3D filtered backprojection. The rebinning step is performed by gridding the data onto a Cartesian grid in a 4D projection space. We present a new method for correcting the gridding error caused by the finite and asymmetric sampling in the neighborhood of each output grid point in the projection space. The reconstruction algorithm was implemented and tested on simulated IGCT data. Results show that the gridding correction reduces the gridding errors to below one Hounsfield unit. With this correction, the reconstruction algorithm does not introduce significant artifacts or blurring when compared to images reconstructed from simulated 2D parallel-ray projections. We also present an investigation of the noise behavior of the method which verifies that the proposed reconstruction algorithm utilizes cross-plane rays as efficiently as in-plane rays and can provide noise comparable to an in-plane parallel-ray geometry for the same number of photons. Simulations of a resolution test pattern and the modulation transfer function demonstrate that the IGCT system, using the proposed algorithm, is capable of 0.4 mm isotropic resolution. The successful implementation of the reconstruction algorithm is an important step in establishing feasibility of the IGCT system.  相似文献   

6.
A table-top volumetric CT system has been implemented that is able to image a 5-cm-thick volume in one circular scan with no cone-beam artifacts. The prototype inverse-geometry CT (IGCT) scanner consists of a large-area, scanned x-ray source and a detector array that is smaller in the transverse direction. The IGCT geometry provides sufficient volumetric sampling because the source and detector have the same axial, or slice direction, extent. This paper describes the implementation of the table-top IGCT scanner, which is based on the NexRay Scanning-Beam Digital X-ray system (NexRay, Inc., Los Gatos, CA) and an investigation of the system performance. The alignment and flat-field calibration procedures are described, along with a summary of the reconstruction algorithm. The resolution and noise performance of the prototype IGCT system are studied through experiments and further supported by analytical predictions and simulations. To study the presence of cone-beam artifacts, a "Defrise" phantom was scanned on both the prototype IGCT scanner and a micro CT system with a +/-5 cone angle for a 4.5-cm volume thickness. Images of inner ear specimens are presented and compared to those from clinical CT systems. Results showed that the prototype IGCT system has a 0.25-mm isotropic resolution and that noise comparable to that from a clinical scanner with equivalent spatial resolution is achievable. The measured MTF and noise values agreed reasonably well with theoretical predictions and computer simulations. The IGCT system was able to faithfully reconstruct the laminated pattern of the Defrise phantom while the micro CT system suffered severe cone-beam artifacts for the same object. The inner ear acquisition verified that the IGCT system can image a complex anatomical object, and the resulting images exhibited more high-resolution details than the clinical CT acquisition. Overall, the successful implementation of the prototype system supports the IGCT concept for single-rotation volumetric scanning free from cone-beam artifacts.  相似文献   

7.
Wang G  Zhao S  Heuscher D 《Medical physics》2002,29(8):1807-1822
With the introduction of spiral/helical multislice CT, medical x-ray CT began a transition into cone-beam geometry. The higher speed, thinner slice, and wider coverage with multislice/cone-beam CT indicate a great potential for dynamic volumetric imaging, with cardiac CT studies being the primary example. Existing ECG-gated cardiac CT algorithms have achieved encouraging results, but they do not utilize any time-varying anatomical information of the heart, and need major improvements to meet critical clinical needs. In this paper, we develop a knowledge-based spiral/helical multislice/cone-beam CT approach for dynamic volumetric cardiac imaging. This approach assumes the relationship between the cardiac status and the ECG signal, such as the volume of the left ventricle as a function of the cardiac phase. Our knowledge-based cardiac CT algorithm is evaluated in numerical simulation and patient studies. In the patient studies, the cardiac status is estimated initially from ECG data and subsequently refined with reconstructed images. Our results demonstrate significant image quality improvements in cardiac CT studies, giving clearly better clarity of the chamber boundaries and vascular structures. In conclusion, this approach seems promising for practical cardiac CT screening and diagnosis.  相似文献   

8.
9.
Purpose: Selecting the appropriate imaging technique in computed tomography (CT) inherently involves balancing the tradeoff between image quality and imaging dose. Modulation of the x-ray fluence field, laterally across the beam, and independently for each projection, may potentially meet user-prescribed, regional image quality objectives, while reducing radiation to the patient. The proposed approach, called fluence field modulated CT (FFMCT), parallels the approach commonly used in intensity-modulated radiation therapy (IMRT), except "image quality plans" replace the "dose plans" of IMRT. This work studies the potential noise and dose benefits of FFMCT via objective driven optimization of fluence fields.Methods: Experiments were carried out in simulation. Image quality plans were defined by specifying signal-to-noise ratio (SNR) criteria for regions of interest (ROIs) in simulated cylindrical and oblong water phantoms, and an anthropomorphic phantom with bone, air, and water equivalent regions. X-ray fluence field patterns were generated using a simulated annealing optimization method that attempts to achieve the spatially-dependent prescribed SNR criteria in the phantoms while limiting dose (to the volume or subvolumes). The resulting SNR and dose distributions were analyzed and compared to results using a bowtie filtered fluence field.Results: Compared to using a fixed bowtie filtered fluence, FFMCT achieved superior agreement with the target image quality objectives, and resulted in integral dose reductions ranging from 39 to 52%. Prioritizing dose constraints for specific regions of interest resulted in a preferential reduction of dose to those regions with some tradeoff in SNR, particularly where the target low dose regions overlapped with regions where high SNR was prescribed. The method appeared fairly robust under increased complexity and heterogeneity of the object structure.Conclusions: These results support that FFMCT has the potential to meet prescribed image quality objectives, while decreasing radiation exposure to the patient. Tradeoffs between SNR and dose may not be eliminated, but might be more efficiently managed using FFMCT.  相似文献   

10.
Current volumetric computed tomography (CT) methods require seconds to acquire a thick volume (>8 cm) with high resolution. Inverse-geometry CT (IGCT) is a new system geometry under investigation that is anticipated to be able to image a thick volume in a single gantry rotation with isotropic resolution and no cone-beam artifacts. IGCT employs a large array of source spots opposite a smaller detector array. The in-plane field of view (FOV) is primarily determined by the size of the source array, in much the same way that the FOV is determined by the size of the detector array in a conventional CT system. Thus, the size of the source array can be a limitation on the achievable FOV. We propose adding additional detector arrays, spaced apart laterally, to increase the in-plane FOV while still using a modestly sized source array. We determine optimal detector placement to maximize the FOV while obtaining relatively uniform sampling. We also demonstrate low wasted radiation of the proposed system through design and simulation of a pre-patient collimator. Reconstructions from simulated projection data show no artifacts when combining the data from the detector arrays. Finally, to demonstrate feasibility of the concept, an anthropomorphic thorax phantom containing a porcine heart was scanned on a prototype table-top system. The reconstructed axial images demonstrate a 45 cm in-plane FOV using a 23 cm source array.  相似文献   

11.
Segmentation software is described, developed for medical image processing and run on Windows. The software applies basic image processing techniques through a graphical user interface. For particular applications, such as brain lesion segmentation, the software enables the combination of different segmentation techniques to improve its efficiency. The program is applied for magnetic resonance imaging, computed tomography and optical images of cryosections. The software can be utilised in numerous applications, including pre-processing for three-dimensional presentations, volumetric analysis and construction of volume conductor models.  相似文献   

12.
The performance of soft-copy displays plays a significant role in the overall image quality of a digital radiographic system. In this work, we discuss methods to characterize the resolution and noise of both cathode ray tube (CRT) and liquid crystal display (LCD) devices. We measured the image quality of five different commercial display devices, representing both CRT and LCD technologies, using a high-quality charge-coupled device (CCD) camera. The modulation transfer function (MTF) was calculated using the line technique, correcting for the MTF of the CCD camera and the display pixel size. The normalized noise power spectrum (NPS) was computed from two-dimensional Fourier analysis of uniform images. To separate the effects of pixel structure from interpixel luminance variations, we created structure-free images by eliminating the pixel structures of the display device. The NPS was then computed from these structure-free images to isolate interpixel luminance variations. We found that the MTF of LCDs remained close to the theoretical limit dictated by their inherent pixel size (0.85 +/- 0.08 at Nyquist frequency), in contrast to the MTF for the two CRT displays, which dropped to 0.15 +/- 0.08 at the Nyquist frequency. However, the NPS of LCDs showed significant peaks due to the subpixel structure, while the NPS of CRT displays exhibited a nearly flat power spectrum. After removing the pixel structure, the structured noise peaks for LCDs were eliminated and the overall noise magnitude was significantly reduced. The average total noise-to-signal ratio for CRT displays was 6.55% +/- 0.59%, of which 6.03% +/- 0.24% was due to interpixel luminance variations, while LCD displays had total noise to signal ratios of 46.1% +/- 5.1% of which 1.50% +/- 0.41% were due to interpixel luminance variations. Depending on the extent of the blurring and prewhitening processes of the human visual system, the magnitude of the display noise (including pixel structure) potentially perceived by the observer was reduced to 0.43% +/- 0.01% (accounting for blurring only) and 0.40 +/- 0.01% (accounting for blurring and prewhitening) for CRTs, and 1.02% +/- 0.22% (accounting for blurring only) and 0.36% +/- 0.08% (accounting for blurring and prewhitening) for LCDs.  相似文献   

13.
14.
Cho S  Xia D  Pelizzari CA  Pan X 《Medical physics》2008,35(7):3030-3040
Helical scanning configuration has been used widely in diagnostic cone-beam computed tomography (CBCT) for acquiring data sufficient for exact image reconstruction over an extended volume. In image-guided radiation therapy (IGRT) and other applications of CBCT, it can be difficult, if not impossible, to implement mechanically a multiple-turn helical trajectory on the imaging systems due to hardware constraints. However, imaging systems in these applications often allow for the implementation of a reverse helical trajectory in which the rotation direction changes between two consecutive turns. Because the reverse helical trajectory satisfies Tuy's condition, when projections of the imaged object are nontruncated, it yields data sufficient for exact image reconstruction within the reverse helix volume. The recently developed chord-based algorithms such as the backprojection filtration (BPF) algorithm can readily be applied to reconstructing images on chords of a reverse helical trajectory, and they can thus reconstruct an image within a volume covered by the chords. Conversely, the chord-based algorithms cannot reconstruct images within regions that are not intersected by chords. In a reverse helix volume, as shown below, chordless regions exist in which no images can thus be reconstructed by use of the chord-based algorithms. In this work, based upon Pack-Noo's formula, a shift-invariant filtered backprojection (FBP) algorithm is derived for exact image reconstruction within the reverse helix volume, including the chordless region. Numerical studies have also been conducted to demonstrate the chordless region in a reverse helix volume and to validate the FBP algorithm for image reconstruction within the chordless region. Results of the numerical studies confirm that the FBP algorithm can exactly reconstruct an image within the entire reverse helix volume, including the chordless region. It is relatively straightforward to extend the FBP algorithm to reconstruct images for general trajectories, including reverse helical trajectories with variable pitch, tilted axis, and/or additional segments between turns.  相似文献   

15.
The noise power spectrum of CT images   总被引:1,自引:0,他引:1  
An expression for the noise power spectrum of images reconstructed by the discrete filtered backprojection algorithm has been derived. The formulation explicitly includes sampling within the projections, angular sampling, and the two-dimensional sampling implicit in the discrete representation of the image. The effects of interpolation are also considered. Noise power spectra predicted by this analysis differ from those predicted using continuous theory in two respects: they are rotationally asymmetric, and they do not approach zero at zero frequency. Both of these properties can be attributed to two-dimensional aliasing due to pixel sampling. The predictions were confirmed by measurement of noise power spectra of both simulated images and images from a commercial x-ray transmission CT scanner.  相似文献   

16.
Hilts M  Jirasek A 《Medical physics》2008,35(1):344-355
X-ray computed tomography (CT) as a method of extracting 3D dose information from irradiated polymer gel dosimeters is showing potential as a practical means to implement gel dosimetry in a radiation therapy clinic. However, the response of CT contrast to dose is weak and noise reduction is critical in order to achieve adequate dose resolutions with this method. Phantom design and CT imaging technique have both been shown to decrease image noise. In addition, image postprocessing using noise reduction filtering techniques have been proposed. This work evaluates in detail the use of the adaptive mean filter for reducing noise in CT gel dosimetry. Filter performance is systematically tested using both synthetic patterns mimicking a range of clinical dose distribution features as well as actual clinical dose distributions. Both low and high signal-to-noise ratio (SNR) situations are examined. For all cases, the effects of filter kernel size and the number of iterations are investigated. Results indicate that adaptive mean filtering is a highly effective tool for noise reduction CT gel dosimetry. The optimum filtering strategy depends on characteristics of the dose distributions and image noise level. For low noise images (SNR approximately 20), the filtered results are excellent and use of adaptive mean filtering is recommended as a standard processing tool. For high noise images (SNR approximately 5) adaptive mean filtering can also produce excellent results, but filtering must be approached with more caution as spatial and dose distortions of the original dose distribution can occur.  相似文献   

17.
The paper presents a computationally efficient 3D-2D image registration algorithm for automatic pre-treatment validation in radiotherapy. The novel aspects of the algorithm include (a) a hybrid cost function based on partial digitally reconstructed radiographs (DRRs) generated along projected anatomical contours and a level set term for similarity measurement; and (b) a fast search method based on parabola fitting and sensitivity-based search order. Using CT and orthogonal x-ray images from a skull and a pelvis phantom, the proposed algorithm is compared with the conventional ray-casting full DRR based registration method. Not only is the algorithm shown to be computationally more efficient with registration time being reduced by a factor of 8, but also the algorithm is shown to offer 50% higher capture range allowing the initial patient displacement up to 15 mm (measured by mean target registration error). For the simulated data, high registration accuracy with average errors of 0.53 mm +/- 0.12 mm for translation and 0.61 +/- 0.29 degrees for rotation within the capture range has been achieved. For the tested phantom data, the algorithm has also shown to be robust without being affected by artificial markers in the image.  相似文献   

18.
目的:对DoseLab软件进行程序改进,增加检测CT图像噪声的功能,对改进的程序进行测试分析。方法:首先,通过使用圆的内接多边形顶点位置计算公式,得到圆内接正三十二边形顶点坐标值。然后,在DoseLab软件Catphan 504模体CTP486模块的图像分析程序中,添加一个正三十二边形的感兴趣区(ROI),用于检测CT图像噪声。选取2018年每月由西门子CT模拟机日常质量检测(DQC)程序得到的水模体两个层面(S3和S4)的CT图像,对DoseLab改进程序进行测试。对DoseLab改进程序和DQC程序得到的CT图像噪声数据,进行统计分析和比较研究。结果:根据公式计算得到了半径4 cm圆的内接正三十二边形的32个顶点的坐标值,该多边形ROI的面积为49.94 cm2。计算DoseLab改进程序和DQC程序得到的CT图像噪声的差异(ΔN)。在120 kV情形,S3和S4层的ΔN值分别为(0.06±0.07) HU和(0.03±0.09) HU;在140 kV情形,S3和S4层的ΔN值分别为(0.10±0.09) HU和(0.08±0.09) HU。结论:通过添加正三十二边形ROI得到的DoseLab改进程序,可以自动分析水模体和Catphan模体,得到CT图像噪声数据。  相似文献   

19.
The utility value was compared among 3 surgical interventions, and the validity of the time trade-off (TTO) method was evaluated by analyzing the correlations of the utility value with the results of the Visual Function Questionnaire-14 (VF-14) and other variables. The subjects were 127 patients aged 40-85 years who were surgically treated between January 2008 and March 2010, including 26 patients with glaucoma, 50 with cataracts, and 51 with comitant strabismus. The scores on VF-14 and utility values determined using TTO were calculated retrospectively. The mean value (SD) of the utility gain was 0.096 (0.105) for glaucoma, 0.101 (0.105) for comitant strabismus, and 0.167 (0.237) for unilateral and 0.245 (0.167) for bilateral cataracts, indicating significant postoperative improvements in the utility value. A significant correlation was observed between the utility value and the postoperative VF-14 scores of the bilateral cataracts, and the postoperative visual acuity of the better eye of the unilateral cataract. The mean value of the quality-adjusted life years was 2.181 for bilateral and 1.424 for unilateral cataracts, 1.132 for strabismus, and 0.870 for glaucoma with an annual discount rate of 3%. The gain of utility value was highest in bilateral cataracts, and lowest in glaucoma, and thus the TTO analysis was considered to be highly valid for cataract surgery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号