首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. We aimed to investigate the role of LINC00184 in NSCLC. Migration, proliferation and invasion of NSCLC cells were analysed using the wound healing assay, cell counting kit-8 assay and transwell assay, respectively. Apoptosis and cell cycle were assessed using flow cytometry. Online bioinformatics tools were utilized to predict downstream microRNAs (miRNA) or genes related to LINC00184 expression. The RNA pull-down experiment and luciferase reporter assay were performed to verify the predictions thereof. LINC00184, miR-524-5p, and high mobility group 2 protein (HMGB2) expression levels in NSCLC tissues and cell lines were detected using quantitative real-time polymerase chain reaction. An NSCLC mouse model was constructed for in vivo experiments. LINC00184 overexpression was observed in NSCLC tissues and cell lines and was found to be correlated with poor prognosis. LINC00184 knockdown inhibited cell proliferation, migration and invasion, induced cell cycle arrest and accelerated apoptosis in NSCLC cell lines. LINC00184 suppressed tumour growth and proliferation in NSCLC mouse models and directly targeted the miR-524-5p/HMGB2 axis. Moreover, the expression levels of LINC00184 and HMGB2 were negatively correlated with miR-524-5p expression, whereas LINC00184 expression was positively correlated with HMGB2 expression. LINC00184 affected the cell cycle, proliferation, apoptosis, migration and invasion in NSCLC via regulation of the miR-524-5p/HMGB2 axis.  相似文献   

2.
Long noncoding RNAs have an essential role in the tumorigenesis of breast cancer (BC). Nonetheless, the consequences of long intergenic noncoding RNA 00641 (LINC00641) in BC remain unidentified. This study shows that LINC00641 expression level was decreased in BC tissues. LINC00641 expression level was negatively related to tumor size, lymph-node metastasis, as well as clinical stage. LINC00641 overexpression inhibited cell proliferation, migration, and invasion but stimulated apoptosis in BC cells. LINC00641 overexpression also remarkably reduced BC growth and metastasis in vivo. LINC00641 acts as a competitive endogenous RNA to sponge miR-194-5p. miR-194-5p level was higher in BC tissues and cells compared with normal-adjacent tissues and normal breast epithelial cell. miR-194-5p expression was negatively correlated with LINC00641 expression in BC tissues. miR-194-5p overexpression reversed the effects of LINC00641 on cell proliferation, cycle, apoptosis, migration, as well as invasion. In conclusion, LINC00641 inhibits BC cell proliferation, migration, as well as invasion by sponging miR-194-5p.  相似文献   

3.
Hepatocellular carcinoma (HCC) is a severe disease with high mortality in the world. It has been shown that long noncoding RNA (lncRNA) might play a role in HCC. The aim of the present study was to identify the role of long intergenic noncoding RNA 01551 (LINC01551) in the HCC development and explore the underlying mechanism of LINC01551/miR-122-5p/ADAM10 axis. The differentially expressed lncRNAs associated with HCC were screened out by a microarray analysis. The expression of LINC01551, miR-122-5p, and ADAM10 was determined in HCC tissues and cells. The potential miRNA (miR-122-5p) regulated by LINC01551 was explored, and the target relationship between miR-122-5p and ADAM10 was confirmed. To evaluate the effect of LINC01551 and miR-122-5p on proliferation, migration, invasion, and apoptosis of HCC, different plasmids were delivered into MHCC97-H cells. High expression of LINC01551 and ADAM10 yet low-expression of miR-122-5p were revealed in HCC tissues and cells. Overexpression of miR-122-5p could downregulate ADAM10. Biological prediction websites and fluorescence in situ hybridization assay verified that LINC01551 was mainly expressed in the cytoplasm. Silencing LINC01551 reduced HCC cell viability, proliferation, migration, invasion, and cell cycle entry yet induce cell apoptosis. Upregulation of LINC01551 increased its ability of competitively binding to miR-122-5p, thus reducing miR-122-5p and upregulating ADAM10 expression, as well as promoting the proliferative, migrative, and invasive ability. Taken together the results, it is highly possible that LINC01551 functions as an competing endogenous RNA (ceRNA) to regulate the miRNA target ADAM10 by sponging miR-122-5p and therefore promotes the development of HCC, highlighting a promising competitive new target for the HCC treatment.  相似文献   

4.
Objective: Long non-coding RNAs (lncRNAs) recently have been identified as influential indicators in a variety of malignancies. The aim of the present study was to identify a functional lncRNA LINC00488 and its effects on thyroid cancer in the view of cell proliferation and apoptosis.Methods: In order to evaluate the effects of LINC00488 on the cellular process of thyroid cancer, we performed a series of in vitro experiments, including cell counting kit-8 (CCK-8) assay, EdU (5-ethynyl-2′-deoxyuridine) assay, flow cytometry, transwell chamber assay, Western blot and RT-qPCR. The target gene of LINC00488 was then identified by bioinformatics analysis (DIANA and TargetScan). Finally, a series of rescue experiments was conducted to validate the effect of LINC00488 and its target genes on proliferation, migration, invasion and apoptosis of thyroid cancer.Results: Our findings revealed that LINC00488 was highly expressed in thyroid cancer cell lines (BCPAP, BHP5-16, TPC-1 and CGTH-W3) and promoted the proliferation, migration and invasion, while inhibited the apoptosis of thyroid cancer cells (BCPAP and TPC-1). The results of bioinformatics analysis and dual luciferase reporter gene assay showed that LINC00488 could directly bind to miR-376a-3p and down-regulated the expression level of miR-376a-3p. In addition, Paraoxonase-2 (PON2) was a target gene of miR-376a-3p and negatively regulated by miR-376a-3p. Rescue experiment indicated that LINC00488 might enhance PON2 expression by sponging miR-376a-3p in thyroid cancer.Conclusion: Taken together, our study revealed that lncRNA LINC00488 acted as an oncogenic gene in the progression of thyroid cancer via regulating miR-376a-3p/PON2 axis, which indicated that LINC00488-miR-376a-3p-PON2 axis could serve as novel biomarkers or potential targets for the treatment of thyroid cancer.  相似文献   

5.
6.
Growing evidence indicates long noncoding RNAs (lncRNAs) are significant regulators in the progression of various malignant tumors including colon cancer. Dysregulation of lncRNA LINC00261 has been identified in many cancers. Investigations on LINC00261 function have revealed that LINC00261 could act as a crucial tumor suppressor in various cancers. But, the biological involvement of LINC00261 in colon cancer is still barely known. Here, we found LINC00261 was reduced in colon cancer cells. Meanwhile, overexpressed LINC00261 repressed colon cancer cell viability and proliferation capacity. In addition, colony cancer cell colony formation was inhibited and apoptosis was enhanced by upregulation of LINC00261. Also, colon cancer cell migration and invasion both were restrained by LINC00261. miR-324-3p can exert important functions in several carcinomas, but its role in colon cancer is uninvestigated. In the current study, miR-324-3p was examined and miR-324-3p was greatly increased in colon cancer cells. Moreover, the association between miR-324-3p and LINC00261 was confirmed via performing RNA immunoprecipitation and RNA-pull-down experiments. In cancer biology, aberrant modulation of the Wnt signaling pathway remains a prevalent theme. Overexpression of LINC00261 obviously impaired colon cancer progression via inactivating the Wnt pathway. Furthermore, in the xenograft model assay, an increase of LINC00261 could suppress colon tumor growth via sponging miR-324-3p and inactivating the Wnt pathway. Overall, our results showed that LINC00261 repressed colon cancer progression via regulating miR-324-3p and the Wnt pathway. LINC00261 could be established as a novel therapeutic target for colon cancer.  相似文献   

7.
摘要 目的:探讨余甘子提取物对肺癌细胞A549增殖、迁移和侵袭的影响及机制。方法:体外培养A549细胞,分为对照组、不同剂量(低、中、高剂量)余甘子提取物组、si-NC组、si-LINC01772组、高剂量余甘子提取物+pcDNA组和高剂量余甘子提取物+pcDNA-LINC01772组,细胞计数试剂盒(CCK-8)法和克隆形成实验检测细胞增殖,划痕实验检测细胞迁移,嵌入式细胞共培养法(Transwell)检测细胞侵袭,免疫印迹法(Western Blot)检测细胞中上皮型钙黏蛋白(E-cadherin)和神经型钙黏蛋白(N-cadherin)蛋白表达水平,实时荧光定量PCR(RT-qPCR)检测LINC01772和miR-153表达水平。双荧光素酶报告基因实验验证LINC01772和miR-153调控关系。结果:与对照组相比,不同剂量余甘子提取物组A549细胞中LINC01772表达降低,且光密度值(OD值)、克隆形成数、迁移以及侵袭细胞数减少(P<0.05),而miR-153含量与E-cadherin蛋白表达升高(P<0.05),且呈剂量依赖性(P<0.05)。LINC01772在A549细胞中负调控miR-153表达。与si-NC组相比,si-LINC01772组A549细胞增殖,侵袭及迁移能力受到抑制(P<0.05)。与高剂量余甘子提取物+pcDNA组相比,高剂量余甘子提取物+pcDNA-LINC01772组A549细胞增殖,侵袭及迁移能力增强(P<0.05)。结论:余甘子提取物可能通过调控LINC01772/miR-153轴抑制肺癌细胞A549增殖、迁移和侵袭,其可能通过下调LINC01772进而上调miR-153表达发挥作用,具有开发为治疗肺癌药物的潜在价值。  相似文献   

8.
Up to date, the mechanism of gastric cancer (GC) development is poorly understood. This study was to demonstrate the effects of LINC00339 on GC progression. Here, we found that LINC00339 was overexpressed expressed in GC tissues and predicted poor outcome. By CCK8, colony formation and Transwell assays, we showed LINC00339 knockdown suppressed GC cell proliferation, migration, and invasion in vitro. Flow cytometry analysis (FACS) indicated that LINC00339 knockdown induced tumor cell apoptosis. Besides, we utilized the xenograft assay and found that LINC00339 depletion led to decreased tumor growth in vivo. Mechanistically, miR-377-3p was found to be inhibited by LINC00339. And LINC00339 suppressed miR-377-3p to upregulate DCP1A, which consequently promoted GC progression. In conclusion, LINC00339 promotes gastric cancer progression by elevating DCP1A expression via inhibiting miR-377-3p.  相似文献   

9.
Pancreatic cancer is a serious solid malignant tumor worldwide. Increasing evidence has pointed out that abnormal expressions of long noncoding RNAs are involved in various tumors. Meanwhile, LINC00052 is reported as a famous tumor regulator in several cancers. Nevertheless, the biological role of LINC00052 in pancreatic cancer progression is still unknown. Our study was to explore the specific mechanism of LINC00052 in pancreatic cancer. First, we observed that the LINC00052 was obviously downregulated in several pancreatic cancer cell lines. Overexpression of LINC00052 greatly repressed AsPC-1 and SW1990 cell proliferation, triggered the apoptosis and prevented cell cycle in the G1 phase. For another, AsPC-1 and SW1990 cell migration and invasion capacity were also obviously repressed by LINC00052 upregulation. Moreover, miR-330-3p was elevated in pancreatic cancer cells and can function as a target of LINC00052 confirmed by luciferase reporter and RNA Immunoprecipitation (RIP) experiments. Inhibition of miR-330-3p could depress pancreatic cancer progression while overexpressed miR-330-3p exhibited an opposite process. Finally, our data indicated that the LINC00052 also remarkably suppressed pancreatic tumor growth via modulating miR-330-3p in vivo. To conclude, our study revealed that the LINC00052 might provide a new perspective for pancreatic cancer therapy.  相似文献   

10.
Background: The decreased level of miR-192-5p has been reported in several kinds of cancers, including bladder, colon, ovarian, and non-small cell lung cancer. However, the expression and function of miR-192-5p in papillary thyroid carcinoma/cancer (PTC) remains unknown.Objective: The present study aimed to explore the function and underlying mechanism of miR-192-5p in PTC development.Methods: PTC tissues and relative normal controls from PTC patients were collected. qRT-PCR analysis was performed to measure miR-192-5p and SH3RF3 mRNA level in PTC tissues and cell lines. CCK-8 method and FCM assay were used to test cell proliferation and apoptosis in TPC-1 cells, respectively. The abilities of cell migration and invasion were detected by wound healing and transwell assays, respectively. The protein expression was evaluated by Western blot. The interaction between miR-192-5p and Src homology 3 (SH3) domain containing ring finger 3 (SH3RF3) were confirmed by dual-luciferase reporter assay.Results: MiR-192-5p level was obviously decreased in PTC tissues and cell lines. Overexpression of miR-192-5p suppressed proliferation, migration, invasion, and EMT process, while induced apoptosis in TPC-1 cells. In addition, miR-192-5p negatively modulated SH3RF3 expression by binding to its 3′-untranslated region (3′UTR). Silencing SH3RF3 inhibited the migration, invasion, and EMT of TPC-1 cells. In the meantime, matrine, an alkaloid extracted from herb, exerted its anti-cancer effects in PTC cells dependent on increase in miR-192-5p expression and decrease in SH3RF3 expression.Conclusion: We firstly declared that miR-192-5p played a tumor suppressive role in PTC via targeting SH3RF3. Moreover, matrine exerted its anti-cancer effects in PTC via regulating miR-192-5p/SH3RF3 pathway.  相似文献   

11.
ABSTRACT

Effect of miR-216a-3p on lung cancer hasn’t been investigated. Here, we explored its effects on lung cancer. MiR-216a-3p expression in lung cancer tissues and cells was detected by RT-qPCR. The target gene of miR-216a-3p was predicted by bioinformatics and confirmed by luciferase-reporter assay. After transfection, cell viability, migration, invasion, proliferation, and apoptosis were detected by MTT, scratch, transwell, colony formation, and flow cytometry. The expressions of COPB2 and apoptosis-related factors were detected by RT-qPCR or western blot. MiR-216a-3p was low-expressed and COPB2 was high-expressed in lung cancer tissues and cells. MiR-216a-3p targeted COPB2 and regulated its expression. MiR-216a-3p inhibited lung cancer cell viability, migration, invasion, and proliferation, while promoted apoptosis. Effect of miR-216a-3p on lung cancer was reversed by COPB2. MiR-216a-3p regulated proliferation, apoptosis, migration, and invasion of lung cancer cells via targeting COPB2.  相似文献   

12.
13.
14.
Previous study has identified the aberrant expression of LINC00657, a long non-coding RNA (lncRNA), in human breast cancer. However, the expression pattern, biological function and underlying mechanism of LINC00657 in human hepatocellular carcinoma (HCC) remain obscure. The expression levels of LINC00657 in HCC tissues and cell lines were determined by quantitative real-time PCR. CCK-8 assay, cell colony formation assay, cell cycle analysis, Transwell assay were performed to determine whether LINC00657 could affect HCC progression. Luciferase reporter assay was used to assess the target of LINC00657. Expressions of the relevant proteins were analyzed by Western blot. Herein, we found that LINC00657 was downregulated in HCC tissue specimens as well as in malignant HCC cell lines. LINC00657 overexpression inhibited the proliferation, migration and invasion of HCC cells, while LINC00657 depletion promoted both cell viability and cell invasion in vitro. We also found that LINC00657 could inhibit tumor growth in vivo. Further experiments demonstrated that down-regulated LINC00657 increased the expression of miR-106a-5p. miR-106a-5p decreased the abundances of PTEN protein, while had no impact on PTEN mRNA. Moreover, we identified that both LINC00657 and PTEN mRNA were targets of miR-106a-5p by using dual-luciferase reporter assay. Our results provide the new evidence supporting the tumor-suppressive role of LINC00657 in HCC, suggesting that LINC00657 might play a role in HCC and can be a novel therapeutic target for treating HCC.  相似文献   

15.
16.
Osteosarcoma is one of the commonest metastatic tumor in children and teenagers, and has a hopeless, prognosis. Long non-coding RNA (lncRNA) acts momentous roles as a regulator on the proliferation and migration of cancer. Here, we performed GEO database analysis and qPCR to identify differentially expressed lncRNAs in osteosarcoma cells. Knockdown of lncRNA LINC01140 was used to detect the effect of LINC01140 on the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of osteosarcoma cells. Bioinformatics analysis and qPCR identified the LINC01140/miR-139-5p/Homeobox A9 (HOXA9) regulatory axis. RNA immunoprecipitation assay, Dual-luciferase assay, and rescue experiments confirmed the interaction of LINC01140/miR-139-5p/HOXA9 in osteosarcoma. LINC01140 was overexpressed in osteosarcoma and knocking down LINC01140 restrained the proliferation and invasion of osteosarcoma cells and EMT. In Saos2 and MG63 cells, LINC01140 sponged miR-139-5p, and a miR-139-5p inhibitor overturned the suppression of LINC01140 knockdown on the proliferation and migration of osteosarcoma cells. Moreover, miR-139-5p depressed the invasion, proliferation, and EMT of osteosarcoma cells via targeting HOXA9. Our results indicate that LINC01140 downregulation inhibits the invasion, proliferation, and EMT in osteosarcoma cells through targeting the miR-139-5p/HOXA9 axis. Therefore, LINC01140 is a potential therapeutic target for osteosarcoma.  相似文献   

17.
18.
Zhang  Qian  Wei  Jingli  Li  Na  Liu  Bailing 《Neurochemical research》2022,47(8):2278-2293

Neuroblastoma (NB) is the most common extracranial solid malignancy in children. Increasing long non-coding RNAs (lncRNAs) are reported to be associated with NB tumorigenesis and aggressiveness. Here, we attempted to investigate the biological functions of LINC00839 in NB progression as well as its possible pathogenic mechanisms. Public microarray datasets were applied to unearth the abnormally expressed lncRNAs in NB. RT-qPCR analysis was used to measure the expression of LINC00839, miR-454-3p, and neuronal differentiation 1 (NEUROD1) mRNA. The protein level was determined by a western blot assay. CCK-8, plate clone formation, EdU, wound-healing scratch, and transwell assays were employed to evaluate cell proliferation, migration, and invasion. Xenografts were developed in nude mice to determine the effects of LINC00839 on NB tumor growth. Dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments were performed to identify the interaction between miR-454-3p and LINC00839 or NEUROD1. According to GSE datasets (GSE16237 and GSE16476), LINC00839 was found as a potential driver of NB progression. LINC00839 expression was higher in NB tumor tissues and cells. Also, LINC00839 expression was positively correlated with MYCN amplification, advanced INSS stages, and worse prognosis. Silencing of LINC00839 suppressed cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, LINC00839 could act as a sponge of miR-454-3p to facilitate the expression of its target NEUROD1. Moreover, miR-454-3p was demonstrated to exert an anti-cancer activity in NB. More importantly, the tumor-suppressive properties mediated by LINC00839 knockdown were significantly counteracted by the inhibition of miR-454-3p or overexpression of NEUROD1. Our study demonstrates that LINC00839 exerts an oncogenic role in NB through sponging miR-454-3p to up-regulate NEUROD1 expression, deepening our comprehension of lncRNA involved in NB and providing access to the possibility of LINC00839 as a therapeutic target for NB.

  相似文献   

19.
MiR-217 can function as an oncogene or a tumour suppressor gene depending on cell type. However, the function of miR-217 in lung cancer remains unclear to date. This study aims to evaluate the function of miR-217 in lung cancer and investigate its effect on the sensitivity of lung cancer cells to cisplatin. The expression of miR-217 was detected in 100 patients by real-time PCR. The effects of miR-217 overexpression on the proliferation, apoptosis, migration and invasion of SPC-A-1 and A549 cells were investigated. The target gene of miR-217 was predicted by Targetscan online software, screened by dual luciferase reporter gene assay and demonstrated by Western blot. Finally, the effects of miR-217 up-regulation on the sensitivity of A549 cells to cisplatin were determined. The expression of miR-217 was significantly lower in lung cancer tissues than in noncancerous tissues (p < 0.001). The overexpression of miR-217 significantly inhibited the proliferation, migration and invasion as well as promoted the apoptosis of lung cancer cells by targeting KRAS. The up-regulation of miR-217 enhanced the sensitivity of SPC-A-1 and A549 cells to cisplatin. In conclusion, miR-217 suppresses tumour development in lung cancer by targeting KRAS and enhances cell sensitivity to cisplatin. Our results encourage researchers to use cisplatin in combination with miR-217 to treat lung cancer. This regime might lead to low-dose cisplatin application and cisplatin side-effect reduction.  相似文献   

20.
Colorectal cancer is one of the most common and leading malignancies globally. Long noncoding RNAs (lncRNAs) function as potentially critical regulator in colorectal cancer. LINC01234, a novel lncRNA in tumor biology, regulates the progression of various tumors. However, the tumorigenic mechanism of LINC01234 in colorectal cancer is still unclear. This study was performed with the aim to prospectively investigate clinical significance, effect, and mechanism of lncRNA LINC01234 in colorectal cancer. First, we found that LINC01234, localized in the cytoplasm, was increased in both colorectal cancer cell lines and tissues. Subsequent functional assays suggested LINC01234 knockdown suppressed cell proliferation, migration, and invasion of colorectal cancer cells, while blocked cell cycle and induced cell apoptosis. Moreover, we identified that miR-1284 was target of LINC01234, we further demonstrated a negative correlation with LINC01234 in colorectal cancer tissues and cells. Furthermore, miR-1284 targeted and suppressed tumor necrosis factor receptor–associated factor 6 (TRAF6). Loss-of-function assay revealed that LINC01234 silencing suppressed colorectal cancer progression through inhibition of miR-1284. In vivo subcutaneous xenotransplanted tumor model indicated LINC01234 knockdown inhibited in vivo tumorigenic ability of colorectal cancer via downregulation of TRAF6. Collectively, this study clarified the biological significance of LINC01234/miR-1284/TRAF6 axis in colorectal cancer progression, providing insights into LINC01234 as novel potential therapeutic target for colorectal cancer therapeutic from bench to clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号