首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The pathophysiology of allergic rhinitis (AR), one of the most common diseases in the world, is still not sufficiently understood. Extracellular vesicles (EVs), which are secreted by host and bacteria cells and take part in near and distant intracellular communication, can provide information about AR. Recently, attention has been drawn to the potential use of EVs as biomarkers, vaccines, or transporters for drug delivery. In this review, we present an up-to-date literature overview on EVs in AR to reveal their potential clinical significance in this condition. A comprehensive and systematic literature search was conducted following PRISMA statement guidelines for original, completed articles, available in English concerning EVs and AR. For this purpose, PubMed/MEDLINE, Scopus, Web of Science, and Cochrane, were searched up until 10 Novenmber 2022. From 275 records, 18 articles were included for analysis. The risk of bias was assessed for all studies as low or moderate risk of overall bias using the Office and Health Assessment and Translation Risk of Bias Rating Tool for Human and Animal Studies. We presented the role of exosomes in the pathophysiology of AR and highlighted the possibility of using exosomes as biomarkers and treatment in this disease.  相似文献   

3.
Tumor extracellular vesicles (EVs), as endocytic vesicles able to transport nucleic acids, proteins, and metabolites in recipient cells, have been recognized fundamental mediators of cell-to-cell communication in breast cancer. The biogenesis and release of EVs are highly regulated processes and both the quantity of EVs and their molecular cargo might reflect the metabolic state of the producing cells. We recently demonstrated that the adipokine leptin, whose circulating levels correlate with adipose tissue expansion, is an inducer of EV release from breast cancer cells. Here, we show a specific proteomic signature of EVs released by MCF-7 breast cancer cells grown in the presence of leptin (Lep-EVs), in attempt to find additional molecular effectors linking obesity to breast cancer biology. An analysis of the proteomic profile of Lep-EVs by LC-MS/MS revealed a significant enrichment in biological processes, molecular functions, and cellular components mainly related to mitochondrial machineries and activity, compared to protein content of EVs from untreated breast cancer cells. Metabolic investigations, carried out to assess the autocrine effects of these vesicles on breast cancer cells, revealed that Lep-EVs were able to increase ATP levels in breast cancer cells. This result is associated with increased mitochondrial respiration evaluated by Seahorse analyzer, supporting the concept that Lep-EVs can modulate MCF-7 breast cancer cell oxidative metabolism. Moreover, taking into account the relevance of tumor immune cell crosstalk in the tumor microenvironment (TME), we analyzed the impact of these vesicles on macrophage polarization, the most abundant immune component in the breast TME. We found that tumor-derived Lep-EVs sustain the polarization of M0 macrophages, derived from the human THP-1 monocytic cells, into M2-like tumor-associated macrophages, in terms of metabolic features, phagocytic activity, and increased expression of CD206-positive population. Overall, our results indicate that leptin by inducing the release of EV-enriched in mitochondrial proteins may control the metabolism of MCF-7 breast cancer cells as well as that of macrophages. Characterization of tumor-derived EV protein cargo in an obesity-associated milieu, such as in the presence of elevated leptin levels, might allow identifying unique features and specific metabolic mechanisms useful to develop novel therapeutic approaches for treatment of breast cancer, especially in obese patients.  相似文献   

4.
Breast cancer is one of the most serious and terrifying threats to the health of women. Recent studies have demonstrated that interaction among cancer cells themselves and those with other cells, including immune cells, in a tumor microenvironment potentially and intrinsically regulate and determine cancer progression and metastasis. Small extracellular vesicles (sEVs), a type of lipid-bilayer particles derived from cells, with a size of less than 200 nm, are recognized as one form of important mediators in cell-to-cell communication. sEVs can transport a variety of bioactive substances, including proteins, RNAs, and lipids. Accumulating evidence has revealed that sEVs play a crucial role in cancer development and progression, with a significant impact on proliferation, invasion, and metastasis. In addition, sEVs systematically coordinate physiological and pathological processes, such as coagulation, vascular leakage, and stromal cell reprogramming, to bring about premetastatic niche formation and to determine metastatic organ tropism. There are a variety of oncogenic factors in tumor-derived sEVs that mediate cellular communication between local stromal cells and distal microenvironment, both of which are important in cancer progression and metastasis. Tumor-derived sEVs contain substances that are similar to parental tumor cells, and as such, sEVs could be biomarkers in cancer progression and potential therapeutic targets, particularly for predicting and preventing future metastatic development. Here, we review the mechanisms underlying the regulation by tumor-derived sEVs on cancer development and progression, including proliferation, metastasis, drug resistance, and immunosuppression, which coordinately shape the pro-metastatic microenvironment. In addition, we describe the application of sEVs to the development of cancer biomarkers and potential therapeutic modalities and discuss how they can be engineered and translated into clinical practice.  相似文献   

5.
The long-underestimated role of extracellular vesicles in cancer is now reconsidered worldwide by basic and clinical scientists, who recently highlighted novel and crucial activities of these moieties. Extracellular vesicles are now considered as king transporters of specific cargoes, including molecular components of parent cells, thus mediating a wide variety of cellular activities both in normal and neoplastic tissues. Here, we discuss the multifunctional activities and underlying mechanisms of extracellular vesicles in neuroblastoma, the most frequent common extra-cranial tumor in childhood. The ability of extracellular vesicles to cross-talk with different cells in the tumor microenvironment and to modulate an anti-tumor immune response, tumorigenesis, tumor growth, metastasis and drug resistance will be pinpointed in detail. The results obtained on the role of extracellular vesicles may represent a panel of suggestions potentially useful in practice, due to their involvement in the response to chemotherapy, and, moreover, their ability to predict resistance to standard therapies—all issues of clinical relevance.  相似文献   

6.
Extracellular vesicles (EVs), specifically exosomes, carry a cell-type dependent cargo that is transported to the recipient cell and translated in the presence of a required machinery. Differences in the cargo carried by the corneal and conjunctival-derived EVs could be the agent that triggers the transdifferentiation of these two cell populations. Therefore, this study investigates the role of EVs in triggering the plasticity of corneal and conjunctival epithelial cells and identifies prospective miRNA and genes responsible for maintaining ocular surface homeostasis. The EVs were extracted from the conditioned media (after starving) of corneal epithelial (hTCEpi) and conjunctival (HCjE-Gi) cell lines using ultracentrifugation. HCjE-Gi cells were cultured with hTCEpi-derived EVs and vice-versa. The EVs were characterized as exosomes using Nanosight and Flow cytometry. KRT3 and KRT12 were used as associated corneal markers, whereas KRT7 and KRT13 were used as associated conjunctival markers with ΔNp63 as a differentiation marker. Shift of these markers was an indication of transdifferentiation. The cargo of the extracted exosomes from both the cell types was explored using next-generation sequencing. The hTCEpi-derived EVs induced conjunctival epithelial cells to express the corneal-associated markers KRT3 and KRT12, losing their conjunctival phenotype at both the mRNA and protein level. Simultaneously, HCjE-Gi-derived EVs induced corneal epithelial cells to express the conjunctival associated markers KRT7 and KRT13, losing their corneal phenotype. This process of differentiation was accompanied by an intermediate step of cell de-differentiation showed by up-regulation in the expression of epithelial stem cell marker ΔNp63, also shown on the ex vivo human cadaveric donor corneas. miRNA molecules (total of 11 including precursor and mature) with significant differences in their relative abundance between the two populations (p < 0.05) were found and investigated. miR-9-5p expression was higher in HCjE-Gi cells and HCjE-Gi-derived EVs when compared to hTCEpi cells and hTCEPi-derived EVs (p < 0.001). The results suggest that EVs released by the two cell types have the ability to influence the transdifferentiation of human conjunctival and corneal epithelial cells. miR-9-5p could have a role in stem cell homeostasis and cell differentiation via HES-1 gene.  相似文献   

7.
Cancer stem cells (CSCs) are a population of tumor cells that share similar properties to normal stem cells. CSCs are able to promote tumor progression and recurrence due to their resistance to chemotherapy and ability to stimulate angiogenesis and differentiate into non-CSCs. Cancer stem cells can also create a significant immunosuppressive environment around themselves by suppressing the activity of effector immune cells and recruiting cells that support tumor escape from immune response. The immunosuppressive effect of CSCs can be mediated by receptors located on their surface, as well as by secreted molecules, which transfer immunosuppressive signals to the cells of tumor microenvironment. In this article, the ability of CSCs to regulate the antitumor immune response and a contribution of CSC-derived EVs into the avoidance of the immune response are discussed.  相似文献   

8.
Tumor progression to a metastatic and ultimately lethal stage relies on a tumor-supporting microenvironment that is generated by reciprocal communication between tumor and stromal host cells. The tumor–stroma crosstalk is instructed by the genetic alterations of the tumor cells—the most frequent being mutations in the gene Tumor protein p53 (TP53) that are clinically correlated with metastasis, drug resistance and poor patient survival. The crucial mediators of tumor–stroma communication are tumor-derived extracellular vesicles (EVs), in particular exosomes, which operate both locally within the primary tumor and in distant organs, at pre-metastatic niches as the future sites of metastasis. Here, we review how wild-type and mutant p53 proteins control the secretion, size, and especially the RNA and protein cargo of tumor-derived EVs. We highlight how EVs extend the cell-autonomous tumor suppressive activity of wild-type p53 into the tumor microenvironment (TME), and how mutant p53 proteins switch EVs into oncogenic messengers that reprogram tumor–host communication within the entire organism so as to promote metastatic tumor cell dissemination.  相似文献   

9.
The discovery that cells secrete extracellular vesicles (EVs), which carry a variety of regulatory proteins, nucleic acids, and lipids, has shed light on the sophisticated manner by which cells can communicate and accordingly function. The bioactivity of EVs is not only defined by their internal content, but also through their surface associated molecules, and the linked downstream signaling effects they elicit in target cells. The extracellular matrix (ECM) contains signaling and structural molecules that are central to tissue maintenance and repair. Recently, a subset of EVs residing within the extracellular matrix has been identified. Although some roles have been proposed for matrix-bound vesicles, their role as signaling molecules within the ECM is yet to be explored. Given the close association of EVs and the ECM, it is not surprising that EVs partly mediate repair and regeneration by modulating matrix deposition and degradation through their cellular targets. This review addresses unique EV features that allow them to interact with and navigate through the ECM, describes how their release and content is influenced by the ECM, and emphasizes the emerging role of stem-cell derived EVs in tissue repair and regeneration through their matrix-modulating properties.  相似文献   

10.
Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.  相似文献   

11.
Pancreatic cancer is one of the most aggressive tumors, with a dismal prognosis due to poor detection rates at early stages, rapid progression, post-surgical complications, and limited effectiveness of conventional oncologic therapies. There are no consistently reliable biomarkers or imaging modalities to accurately diagnose, classify, and predict the biological behavior of this tumor. Therefore, it is imperative to develop new and improved strategies to detect pancreatic lesions in the early stages of cancerization with greater sensitivity and specificity. Extracellular vesicles, including exosome and microvesicles, are membrane-coated cellular products that are released in the outer environment. All cells produce extracellular vesicles; however, this process is enhanced by inflammation and tumorigenesis. Based on accumulating evidence, extracellular vesicles play a crucial role in pancreatic cancer progression and chemoresistance. Moreover, they may represent potential biomarkers and promising therapy targets. The aim of the present review is to review the current evidence on the role of extracellular vesicles in pancreatic cancer.  相似文献   

12.
Patients with epithelial ovarian cancer (EOC) are often diagnosed at an advanced stage due to nonspecific symptoms and ineffective screening approaches. Although chemotherapy has been available and widely used for the treatment of advanced EOC, the overall prognosis remains dismal. As part of the intrinsic defense mechanisms against cancer development and progression, immune cells are recruited into the tumor microenvironment (TME), and this process is directed by the interactions between different chemokines and their receptors. In this review, the functional significance of CXC chemokine ligands/chemokine receptors (CXCL/CXCR) and their roles in modulating EOC progression are summarized. The status and prospects of CXCR/CXCL-based theranostic strategies in EOC management are also discussed.  相似文献   

13.
Platelet-derived extracellular vesicles (PEVs) play important roles in hemostasis and thrombosis. There are three major types of PEVs described based on their size and characteristics, but newer types may continue to emerge owing to the ongoing improvement in the methodologies and terms used to define various types of EVs. As the literature on EVs is growing, there are continuing attempts to standardize protocols for EV isolation and reach consensus in the field. This review provides information on mechanisms of PEV production, characteristics, cellular interaction, and their pathological role, especially in autoimmune and infectious diseases. We also highlight the mechanisms through which PEVs can activate parent cells in a feedback loop.  相似文献   

14.
Prostate cancer remains a life-threatening disease among men worldwide. The majority of PCa-related mortality results from metastatic disease that is characterized by metastasis of prostate tumor cells to various distant organs, such as lung, liver, and bone. Bone metastasis is most common in prostate cancer with osteoblastic and osteolytic lesions. The precise mechanisms underlying PCa metastasis are still being delineated. Intercellular communication is a key feature underlying prostate cancer progression and metastasis. There exists local signaling between prostate cancer cells and cells within the primary tumor microenvironment (TME), in addition to long range signaling wherein tumor cells communicate with sites of future metastases to promote the formation of pre-metastatic niches (PMN) to augment the growth of disseminated tumor cells upon metastasis. Over the last decade, exosomes/ extracellular vesicles have been demonstrated to be involved in such signaling. Exosomes are nanosized extracellular vesicles (EVs), between 30 and 150 nm in thickness, that originate and are released from cells after multivesicular bodies (MVB) fuse with the plasma membrane. These vesicles consist of lipid bilayer membrane enclosing a cargo of biomolecules, including proteins, lipids, RNA, and DNA. Exosomes mediate intercellular communication by transferring their cargo to recipient cells to modulate target cellular functions. In this review, we discuss the contribution of exosomes/extracellular vesicles in prostate cancer progression, in pre-metastatic niche establishment, and in organ-specific metastases. In addition, we briefly discuss the clinical significance of exosomes as biomarkers and therapeutic agents.  相似文献   

15.
Human intestinal microbiota comprise of a dynamic population of bacterial species and other microorganisms with the capacity to interact with the rest of the organism and strongly influence the host during homeostasis and disease. Commensal and pathogenic bacteria coexist in homeostasis with the intestinal epithelium and the gastrointestinal tract’s immune system, or GALT (gut-associated lymphoid tissue), of the host. However, a disruption to this homeostasis or dysbiosis by different factors (e.g., stress, diet, use of antibiotics, age, inflammatory processes) can cause brain dysfunction given the communication between the gut and brain. Recently, extracellular vesicles (EVs) derived from bacteria have emerged as possible carriers in gut-brain communication through the interaction of their vesicle components with immune receptors, which lead to neuroinflammatory immune response activation. This review discusses the critical role of bacterial EVs from the gut in the neuropathology of brain dysfunctions by modulating the immune response. These vesicles, which contain harmful bacterial EV contents such as lipopolysaccharide (LPS), peptidoglycans, toxins and nucleic acids, are capable of crossing tissue barriers including the blood-brain barrier and interacting with the immune receptors of glial cells (e.g., Toll-like receptors) to lead to the production of cytokines and inflammatory mediators, which can cause brain impairment and behavioral dysfunctions.  相似文献   

16.
Epithelial sodium channel (ENaC) is a pivotal regulator of alveolar fluid clearance in the airway epithelium and plays a key role in the treatment of acute lung injury (ALI), which is mainly composed of the three homologous subunits (α, β and γ). The mechanisms of microRNAs in small extracellular vesicles (sEVs) derived from mesenchymal stem cell (MSC-sEVs) on the regulation of lung ion transport are seldom reported. In this study, we aimed at investigating whether miR-34c had an effect on ENaC dysfunction induced by lipopolysaccharide and explored the underlying mechanism in this process. Primarily, the effect of miR-34c on lung edema and histopathology changes in an ALI mouse model was investigated. Then the uptake of PKH26-labeled sEVs was observed in recipient cells, and we observed that the overexpression of miR-34c in MSC-sEVs could upregulate the LPS-inhibited γ-ENaC expression. The dual luciferase reporter gene assay demonstrated that myristoylated alanine-rich C kinase substrate (MARCKS) was one of target genes of miR-34c, the protein expression of which was negatively correlated with miR-34c. Subsequently, either upregulating miR-34c or knocking down MARCKS could increase the protein expression of phospho-phosphatidylinositol 3-kinase (p-PI3K) and phospho-protein kinase B (p-AKT), implying a downstream regulation pathway was involved. All of the above suggest that miR-34c in MSC-sEVs can attenuate edematous lung injury via enhancing γ-ENaC expression, at least partially, through targeting MARCKS and activating the PI3K/AKT signaling pathway subsequently.  相似文献   

17.
Colorectal cancer remains one of the leading prevalent cancers in the world and is the fourth most common cause of death from cancer. Unfortunately, the currently utilized chemotherapies fail in selectively targeting cancer cells and cause harm to healthy cells, which results in profound side effects. Researchers are focused on developing anti-cancer targeted medications, which is essential to making them safer, more effective, and more selective and to maximizing their therapeutic benefits. Milk-derived extracellular vesicles (EVs) from camels and cows have attracted much attention as a natural substitute product that effectively suppresses a wide range of tumor cells. This review sheds light on the biogenesis, methods of isolation, characterization, and molecular composition of milk EVs as well as the therapeutic potentials of milk EVs on colorectal cancer.  相似文献   

18.
Malignant mesothelioma is an aggressive tumour of the pleura (MPM) or peritoneum with a clinical presentation at an advanced stage of the disease. Current therapies only marginally improve survival and there is an urgent need to identify new treatments. Carcinoma-associated fibroblasts (CAFs) represent the main component of a vast stroma within MPM and play an important role in the tumour microenvironment. The influence of CAFs on cancer progression, aggressiveness and metastasis is well understood; however, the role of CAF-derived extracellular vesicles (CAF-EVs) in the promotion of tumour development and invasiveness is underexplored. We purified CAF-EVs from MPM-associated cells and healthy dermal human fibroblasts and examined their effect on cell proliferation and motility. The data show that exposure of healthy mesothelial cells to EVs derived from CAFs, but not from normal dermal human fibroblasts (NDHF) resulted in activating pro-oncogenic signalling pathways and increased proliferation and motility. Consistent with its role in suppressing Yes-Associated Protein (YAP) activation (which in MPM is a result of Hippo pathway inactivation), treatment with Simvastatin ameliorated the pro-oncogenic effects instigated by CAF-EVs by mechanisms involving both a reduction in EV number and changes in EV cargo. Collectively, these data determine the significance of CAF-derived EVs in mesothelioma development and progression and suggest new targets in cancer therapy.  相似文献   

19.
Ovarian cancer is the most malignant gynecological tumor. Previous studies have reported that metabolic alterations resulting from deregulated lipid metabolism promote ovarian cancer aggressiveness. Lipid metabolism involves the oxidation of fatty acids, which leads to energy generation or new lipid metabolite synthesis. The upregulation of fatty acid synthesis and related signaling promote tumor cell proliferation and migration, and, consequently, lead to poor prognosis. Fatty acid-mediated lipid metabolism in the tumor microenvironment (TME) modulates tumor cell immunity by regulating immune cells, including T cells, B cells, macrophages, and natural killer cells, which play essential roles in ovarian cancer cell survival. Here, the types and sources of fatty acids and their interactions with the TME of ovarian cancer have been reviewed. Additionally, this review focuses on the role of fatty acid metabolism in tumor immunity and suggests that fatty acid and related lipid metabolic pathways are potential therapeutic targets for ovarian cancer.  相似文献   

20.
Osteosarcoma (OS) is an aggressive bone tumor that mainly affects children and adolescents. OS has a strong tendency to relapse and metastasize, resulting in poor prognosis and survival. The high heterogeneity and genetic complexity of OS make it challenging to identify new therapeutic targets. Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into adipocytes, osteoblasts, or chondroblasts. OS is thought to originate at some stage in the differentiation process of MSC to pre-osteoblast or from osteoblast precursors. MSCs contribute to OS progression by interacting with tumor cells via paracrine signaling and affect tumor cell proliferation, invasion, angiogenesis, immune response, and metastasis. Extracellular vesicles (EVs), secreted by OS cells and MSCs in the tumor microenvironment, are crucial mediators of intercellular communication, driving OS progression by transferring miRNAs/RNA and proteins to other cells. MSC-derived EVs have both pro-tumor and anti-tumor effects on OS progression. MSC-EVs can be also engineered to deliver anti-tumor cargo to the tumor site, which offers potential applications in MSC-EV-based OS treatment. In this review, we highlight the role of MSCs in OS, with a focus on EV-mediated communication between OS cells and MSCs and their role in OS pathogenesis and therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号