首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the effect of oxygen mixing percentage (OMP) on structural, microstructural, dielectric, linear, and nonlinear optical properties of Dy2O3‐doped (K0.5Na0.5)NbO3 thin films. The (K0.5Na0.5)NbO3 + 0.5 wt%Dy2O3 (KNN05D) ferroelectric thin films were deposited on to quartz and Pt/Ti/SiO2/Si substrates by RF magnetron sputtering. An increase in the refractive index from 2.08 to 2.21 and a decrease in the optical bandgap from 4.30 to 4.28 eV indicate the improvement in crystallinity, which is also confirmed from Raman studies. A high relative permittivity (εr=281‐332) and low loss tangent (tanδ=1.2%‐1.9%) were obtained for the films deposited in 100% OMP, measured at microwave frequencies (5‐15 GHz). The leakage current of the films found to be as low as 9.90×10?9 A/cm2 at 150 kV/cm and Poole‐Frenkel emission is the dominant conduction mechanism in the films. The third order nonlinear optical properties of the KNN05D films were investigated using modified single beam z‐scan method. The third order nonlinear susceptibility (?χ(3)?) values of KNN05D films increased from 0.69×10?3 esu to 1.40×10?3 esu with an increase in OMP. The larger and positive nonlinear refractive index n2=7.04×10?6 cm2/W, and nonlinear absorption coefficient β=1.70 cm/W were obtained for the 100% OMP film, indicating that KNN05D films are good candidates for the applications in nonlinear photonics and high‐frequency devices.  相似文献   

2.
In this paper, x mol% Mn-doped SrTiO3 (STMx, x?=?0, 0.5, 1, 3 and 5) thin films were synthesized by a sol-gel method. The effect of Mn doping on the microstructure and electrical performance was investigated. STMx (x?≤?1) thin films shows a single cubic perovskite phase while impurity phase appears for STM3 and STM5 thin films confirmed by X-ray diffraction. X-ray photoelectron spectra reveals that STM1 thin film has the lowest concentration of oxygen vacancy. The dielectric constant and loss of STMx (x?≤?1) films display good frequency stability, while decrease with the frequency for STM3 and STM5 thin films. And all samples display excellent bias stability of dielectric constant; this is advantageous for applications in a high electric field. The ferroelectric test demonstrates that the electrical breakdown strength increases and leakage current decreases for Mn doped SrTiO3 films. A great recoverable energy storage density of 23.8?J/cm3 with an efficiency of 69.8% at 2.286?MV/cm is obtained in STM1 thin film. Furthermore, STM1 thin film shows good frequency stability of energy storage properties. It indicates that Mn doping is a simple and effective method to improve the energy storage properties of dielectric capacitors.  相似文献   

3.
Several kinds of homogeneous organic–inorganic hybrid polymer thin films were designed with improved mechanical properties and low dielectric constants (<3.0). Novel soluble siloxane–silsesquioxane hybrid polymers were synthesized with cyclic and/or cage silane monomers, which had triorganosiloxy (R3Si1/2), diorganosiloxane (R2SiO2/2), and organosilsesquioxane (RSiO3/2) moieties with ethylene bridges at the molecular level, by the hydrolysis and condensation of 2,4,6,8‐tetramethyl‐2,4,6,8‐tetra(trimethoxysilylethyl)cyclotetrasiloxane (a cyclic monomer). The electrical properties of these films, including the dielectric constant (~2.51), leakage current (6.4 × 10?11 A/cm2 at 0.5 MV/cm), and breakdown voltage (~5.4 MV/cm) were fairly good. Moreover, the mechanical properties of the hybrid films, including the hardness (~7 GPa), modulus (~1.2 GPa), and crack‐free thickness (<2 μm), were excellent in comparison with those of previous spin‐on‐glass materials with low dielectric constants. The excellent mechanical properties were proposed to be due to the high contents of Si? OH groups (>30%) and the existence of ethylene bridge and siloxane moieties in the hybrid polymer precursors. In addition, the mechanical properties of the hybrid films were affected by the contents of the cagelike structures. The more cagelike structures a hybrid film contained, the worse its mechanical properties were. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 626–634, 2003  相似文献   

4.
In this work, we introduced a simple solution processing method to prepare yttrium (Y) doped hafnium oxide (HfO2) based dielectric films. The films had high densities, low surface roughness, maximum permittivity of about 32, leakage current < 1.0 × 10?7 A/cm2 at 2 MV/cm, and breakdown field >5.0 MV/cm. In addition to dielectric performance, we investigated the influence of YO1.5 fraction on the electronic structure between Y doped HfO2 thin films and silicon (Si) substrates. The valence band electronic structure, energy gap and conduction band structure changed linearly with YO1.5 fraction. Given this cost-effective deposition technique and excellent dielectric performance, solution-processed Y doped HfO2 based thin films have the potential for insulator applications.  相似文献   

5.
CaTiO3 is a typical linear dielectric material with high dielectric constant, low dielectric loss, and high resistivity, which is expected as a promising candidate for the high energy storage density applications. In the previous work, an energy density of 1.5 J/cm3 was obtained in CaTiO3 ceramics, where the dielectric strength was only 435 kV/cm. In fact, the intrinsic dielectric strength of CaTiO3 is predicted as high as 4.2 MV/cm. Therefore, it should be a challenge issue to enhance the dielectric strength and energy storage density of CaTiO3 ceramics by optimizing the microstructures. In the present work, dense CaTiO3 ceramics with fine and uniform microstructures are prepared by spark plasma sintering, and the greatly enhanced dielectric strength (910 kV/cm) and energy storage density (6.9 J/cm3) are obtained. This can be ascribed to the improved resistivity and thermal conductivity, associated with the fine and uniform microstructures. The different post‐breakdown features of CaTiO3 ceramics prepared by different process well interpret why the enhanced dielectric strength is achieved in the SPS sample. The energy storage density can be further improved to 11.8 J/cm3 by introducing the amorphous alumina thin films as the charge blocking layer, where the dielectric strength is 1188 kV/cm.  相似文献   

6.
Development of advanced dielectric materials with both high-electric energy density and high-temperature resistant attributes is highly desirable in modern electronics and electrical systems. Herein, a series of polyimide (PI)-based sandwich-structured dielectric nanocomposite films have been attempted to develop the advanced high-temperature resistant capacitor films, wherein the boron nitride nanosheets/PI nanocomposite acts as the outer layers and the zinc oxide (ZnO)/PI as the middle layer. Benefitting from the merits of both fillers and the unique structure, the resulting nanocomposite films can simultaneously achieve both high-dielectric constant and high-breakdown strength, as well as low-electrical conduction loss, thus leading to improved discharged energy densities (Ue) and charge/discharge efficiency (η) at elevated temperatures. It is found that the sandwich-structured nanocomposite film with 0.4 vol% ZnO (0.4ZnO/PI-S) can deliver a maximum Ue of 5.29 J cm−3 at 400 MV m−1 and 150°C, which is about 1.9 times that of the pristine PI film. Moreover, outstanding dielectric stability over 10,000 charge/discharge cycles has been demonstrated in such PI-based sandwich-structured nanocomposite films at 150°C and 200 MV m−1. This research may provide a new paradigm to explore polymer nanocomposites having excellent energy storage and efficiency at elevated temperatures.  相似文献   

7.
An ultra‐wide temperature stable ceramic system based on (1?x) [0.94(0.75Bi0.5Na0.5TiO3?0.25NaNbO3)?0.06BaTiO3]?xCaZrO3 (CZ100x) is developed for capacitor application in this study. All samples exhibit characteristics of pseudocubic structures in XRD patterns. With CaZrO3 addition, the coupling effect of polar nanoregions (PNRs) is weakening, leading to greatly improved temperature stability of dielectric properties. Among all samples, the most attractive properties are obtained in the composition of CZ10 at <15% variation in dielectric permittivity spanning from ?55°C to 400°C and lower than 0.02 of dielectric loss of between ?60°C and 300°C, accompanied by high DC resistivity (107 Ω m at 300°C, calculated by fitting Jonscher's power law). Furthermore, tentative multilayer ceramic capacitors (MLCCs) composed of CZ10 dielectric and Ag:Pd (70:30) internal electrode layers were fabricated by tape casting and cofiring processes. Temperature‐stable dielectric property in formation of MLCC was successfully realized, with small ΔC/C25°C (<15%) and loss factor (≤ 0.02) between ?55°C and 340°C. Meanwhile, CZ10‐based MLCC showed temperature‐insensitive energy storage density of 0.31?0.35 J/cm3 and high‐energy efficiency of above 77% at 120 kV/cm in the range of ?55 to 175°C. All of these exhibit wonderful temperature‐stable dielectric properties and indicate the promising future of CZ10 dielectric as high‐temperature ceramic capacitors.  相似文献   

8.
Nanocomposite polymer electrolyte (NCPE) films of [75 wt % poly(ε‐caprolactone) : 25 wt % zinc triflate] + x wt % nanofiller Al2O3 (x = 1, 3, 5, 7) were prepared by solution cast technique. Such NCPE films were characterized using Fourier transform infrared and AC impedance spectroscopic techniques. Complexation of polymer with salt and nanofiller was revealed from FTIR analysis. On the other hand, an apparent increase in the number density of charge carriers upto 5 wt % loading of the nanofiller was also confirmed. Furthermore, AC impedance spectroscopic studies have shown that ionic conductivity increases with the addition of Al2O3 and reaches a maximum of 2.5 × 10?5 S cm?1 at room temperature for 5 wt % loading of nanofiller. The dielectric behavior of all the synthesized samples has also been analyzed and presented. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40524.  相似文献   

9.
xNd(Zn1/2Ti1/2)O3–(1?x)Ba0.6Sr0.4TiO3 (xNZT–BST) thin films were fabricated on Pt/Ti/SiO2/Si substrates by sol–gel method with = 0, 3%, 6%, and 10%. The structures, surface morphology, dielectric and ferroelectric properties, and thermal stability of xNZT–BST thin films were investigated as a function of NZT content. It was observed that the introduction of NZT into BST decreased grain size, dielectric constant, ferroelectricity, tunability, and significantly improved dielectric loss and dielectric thermal stability. The corresponding reasons were discussed. The 10%NZT–BST thin film exhibited the least dielectric loss of 0.005 and the lowest temperature coefficient of permittivity (TCP) of 3.2 × 10?3/°C. In addition, the figure of merit (FOM) of xNZT–BST (x = 3%, 6%, and 10%) films was higher than that of pure BST film. Our results showed that the introduction of appropriate NZT into BST could modify the dielectric quality of BST thin films with good thermal stability. Especially for the 3%NZT–BST thin film, it showed the highest FOM of 33.58 for its appropriate tunability of 32.87% and low dielectric loss of 0.0098.  相似文献   

10.
A polyfluorinated aromatic diamine, 3,3′, 5,5′‐tetrafluoro‐4,4′‐diaminodiphenylmethane (TFDAM), was synthesized and characterized. A series of polyimides, PI‐1–PI‐4, were prepared by reacting the diamine with four aromatic dianhydrides via a one‐step high‐temperature polycondensation procedure. The obtained polyimide resin had moderate inherent viscosity (0.56–0.68 dL/g) and excellent solubility in common organic solvents. The polyimide films exhibited good thermal stability, with an initial thermal decomposition temperature of 555°C–621°C, a 10% weight loss temperature of 560°C–636°C, and a glass‐transition temperature of 280°C–326°C. Flexible and tough polyimide films showed good tensile properties, with tensile strength of 121–138 MPa, elongation at break of 9%–12%, and tensile modulus of 2.2–2.9 GPa. The polyimide films were good dielectric materials, and surface and volume resistance were on the order of a magnitude of 1014 and 1015 Ω cm, respectively. The dielectric constant of the films was below 3.0 at 1 MHz. The polyfluorinated films showed good transparency in the visible‐light region, with a cutoff wavelength as low as 302 nm and transmittance higher than 70% at 450 nm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1442–1449, 2007  相似文献   

11.
(K0.5Na0.5)NbO3 (KNN) thin films have been deposited onto Pt/Ti/SiO2/Si and quartz substrates by RF magnetron sputtering. The films were deposited at 400°C with the variation in oxygen mixing percentage (OMP) ratio from 0% to 100% and annealed at 700°C in oxygen atmosphere. The crystallinity of the films is found to be increased with increased OMP. Dielectric properties of the films were examined over the frequency range from 1 kHz to 1 MHz and the temperature range of 30°C to 400°C. The Curie temperature of the films was found to be in the range 369°C–373°C. For the first time, the split postdielectric resonator (SPDR) method was used to measure the microwave (10–20 GHz) dielectric properties of KNN thin films. The optical properties of as‐deposited and annealed KNN thin films were investigated by means of transmittance spectra. The optical bandgap is calculated by using the Tauc relation, and found to be in the range 4.34–4.40 eV and 4.29–4.37 eV for the as‐deposited and annealed films, respectively. The refractive index (n700nm) of the films found to be in the range 1.98–2.01 and 1.99–2.07 for as‐deposited and annealed films, respectively. The refractive index dispersion is analyzed by using Wemple–DiDomenico (W–D) single‐oscillator model. The effect of annealing and OMP on the refractive index, packing density and W–D parameters has been investigated. The average single oscillator energy (Eo) and dispersion energies (Ed) of the annealed KNN thin films are in the range of 6.17–7.16 eV and 18.77–22.19 eV, respectively. AC‐conductivity of the annealed films was analyzed by using double power law. Ag/KNN/Pt thin films followed the ohmic conduction (J ∝ Eα, where α ~1) and the low leakage current density obtained for the deposited at 100% O2 is 3.14 × 10?5 A/cm2 at 50 kV/cm.  相似文献   

12.
Thin films of different thicknesses were prepared through glow discharge of 2‐(diethylamino)ethyl methacrylate (DEAEMA) using a capacitively coupled reactor. Current density–voltage (J–V) characteristics for plasma polymerized (PP) DEAEMA thin films of thicknesses 100, 200, 250, and 300 nm in aluminum/PPDEAEMA/aluminum sandwich configuration were studied over the temperature range from 298 to 423 K. JV curves reveal that in the low‐voltage region, the conduction current obeys Ohm's law while in the high‐voltage region the behavior attributed to be space charge‐limited conduction in PPDEAEMA thin films. The carrier mobility was calculated to be about 6.80 × 10?19 to 2.38 × 10?18 m?2 V?1s?1 for various thicknesses. The free carrier density was found to be about 1.78 × 1023 to 2.04 × 1023 m?3, and the trap density was found to be about 6.93 × 1023 to 15.9 × 1023 m?3 for different thicknesses. The activation energies were estimated to be about 0.005–0.016 eV for 2 and 30 V of PPDEAEMA thin films of different thicknesses. The low‐activation energies indicate that the thermally activated hopping conduction is operative in PPDEAEMA thin films. POLYM. ENG. SCI., 55:2729–2734, 2015. © 2015 Society of Plastics Engineers  相似文献   

13.
AC electrical conductivity (σac), dielectric constant (?′), and dielectric loss tangent (tan δ) of plasma polymerized 1, 1, 3, 3‐tetramethoxy‐propane (PPTMP) thin films of thicknesses 100, 150, and 200 nm prepared by plasma polymerization technique using a capacitively coupled glow discharge reactor have been investigated in the frequency range of 30–106 Hz. It is observed that σac increases as frequency increases with a higher slope in the medium frequency (<105Hz) region in the PPTMP thin films of three thicknesses. These observations suggest that the conduction may be dominated by hopping of carriers between the localized states. The general trend of ?′ is to increase with increasing thickness, ?′ remains independent of frequency upto about 104Hz and then falls rapidly. The dependence of tanδ with frequency for PPTMP thin films of different thicknesses showed small relaxation peak at the very low frequencies (<102Hz) and then it decreases slightly with a broad minimum at 103 Hz and again increases. Cole–Cole plot reveals that Debye type of mechanism is operative in the experimental frequency range. POLYM. ENG. SCI., 58:1342–1345, 2018. © 2017 Society of Plastics Engineers  相似文献   

14.
Polypyrrole (PPy) thin films were synthesized by plasma polymerization technique and investigated the influence of discharge power on microstructural, optical, surface wettability, and dielectric properties of grown films. As deposited PPy films were characterized by X‐ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR), Atomic force microscopy, UV‐VIS spectroscopy and dielectric spectroscopy. The broad XRD peak present at 2θ = 23.5° revealed the amorphous nature of grown PPy films. The FTIR spectra displayed characteristic peaks in the wavenumbers regions 3300–3400 cm?1 and 1635–1700 cm?1 and respective peaks intensities decreased slightly as a function of discharge powers. Significant modifications in surface morphology of the films were observed as a function of discharge powers and PPy films synthesized at higher discharge power of 50 W demonstrated characteristic surface morphology composed of characteristic vertical cone shaped clusters provided with rms roughness of 3.42 nm. The UV‐VIS absorption spectra evidenced that the optical density values varied as a function of discharge power. The evaluated band gap energies decreased with an increase of discharge power and found to be 2.53 eV for PPy films prepared at higher discharge power of 50 W. The surface wettability studies evidenced that as prepared PPy films were found to be hydrophilic in nature. The dielectric measurements were carried out for “ITO/polymer/ITO” structures in the frequency range 10 mHz to 100 kHz. As evidenced from dielectric spectroscopic measurements, PPy films synthesized at 50 W were demonstrated conductivity value of 6.0 × 10?12 S/m. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43982.  相似文献   

15.
In this paper, we report results concerning properties of diamond-like carbon (DLC) thin films obtained in different experimental conditions: various RF power values and different precursors (methane, acetone and toluene or in combination with nitrogen). The deposition rate of DLC thin films obtained from precursors with low ionizing energy and high number of carbon atoms in molecule as acetone and toluene was higher (142 nm/min for acetone and 607 nm/min for toluene as compared with 79 nm/min for methane at 400 W input power). The highest value of hardness was obtained from methane (18 GPa). In the case of acetone and toluene precursors, the hardness increased with input power to the highest values of 16.8 and 14.8 GPa. By utilizing nitrogen as doping element, the resistivity of DLC thin films obtained from methane and acetone decreased from values higher than 107 Ω cm to lower values of 12.5×103 Ω cm for 3.79% nitrogen atomic concentration in the case of films obtained from methane and 40×103 Ω cm for 4.26% nitrogen atomic concentration in the case of films obtained from acetone.  相似文献   

16.
《Ceramics International》2017,43(16):13371-13376
Lead free Bi0.5(Na0.8K0.2)0.5TiO3 thin films doped with BiFeO3 (abbreviated as BNKT-xBFO) (x = 0, 0.02, 0.04, 0.08, 0.10) were deposited on Pt(111)/Ti/SiO2/Si substrates by sol-gel/spin coating technique and the effects of BiFeO3 content on the crystal structure and electrical properties were investigated in detail. The results showed that all the BNKT-xBFO thin films exhibited a single perovskite phase structure and high-dense surface. Reduced leakage current density, enhanced dielectric and ferroelectric properties were achieved at the optimal composition of BNKT-0.10BFO thin films, with a leakage current density, dielectric constant, dielectric loss and maximum polarization of < 2 × 10−4 A/cm3, ~ 978, ~ 0.028 and ~ 74.13 μC/cm2 at room temperature, respectively. Moreover, the BNKT-0.10BFO thin films possessed superior energy storage properties due to their slim P-E loops and large maximum polarization, with an energy storage density of 22.12 J/cm3 and an energy conversion efficiency of 60.85% under a relatively low electric field of 1200 kV/cm. Furthermore, the first half period of the BNKT-0.10BFO thin film capacitor was about 0.15 μs, during which most charges and energy were released. The large recoverable energy density and the fast discharge process indicated the potential application of the BNKT-0.10BFO thin films in electrostatic capacitors and embedded devices.  相似文献   

17.
Thin films of cubic pyrochlore bismuth zinc niobate, a lead‐free dielectric, were fabricated using a solution chemistry based upon the Pechini method. Scanning electron microscopy confirmed that the films are smooth and mostly dense. The films exhibit a dielectric constant of 145 ± 5, a low dielectric loss of 0.00065 ± 0.0001, and a room temperature, 1 kHz maximum field of approximately 4.7 MV/cm. At frequencies of 100 Hz and 10 kHz, the maximum field sustained by the material increased to 5.0 MV/cm and 5.1 MV/cm, although the dielectric loss increased to 0.0065 ± 0.001. At a measurement frequency of 10 kHz, the maximum energy storage density was ~60.8 ± 2.0 J/cm3, while at a measurement frequency of 100 Hz, the maximum energy storage was ~46.7 ± 1.7 J/cm3. As the temperature was increased to 200°C, the breakdown strength of the films decreased, while the loss tangent remained modest. At 200°C and a measurement frequency of 100 Hz, the maximum energy storage density was ~23.1 ± 0.8 J/cm3, and at 10 kHz, the maximum energy storage density was ~27.3 ± 1.0 J/cm3.  相似文献   

18.
Novel single‐ion‐conductor polymer (SCP) electrolytes based on oxalate‐chelated‐borate‐structure‐grafted poly(vinyl formal) (PVFM) were synthesized via a solution casting technique. The influence of the molar ratio of ? OH and boron atoms in PVFM on the ionic conductivity (σ) of the SCP electrolytes at different temperatures was investigated with alternating‐current impedance spectroscopy in the frequency range of 0.01 Hz to 1 MHz. The results show that σ of the SCP electrolytes at 15–60 °C was about 10?6–10?5 S/cm, and temperature dependence of the conductivity of the electrolytes followed the Vogel–Tamman–Fulcher relationship. The dielectric behaviors of the SCP electrolytes were analyzed in view of the dielectric permittivity and dielectric modulus of the electrolytes. Dielectric analysis revealed that the transport of Li+ ions in the PVFM‐based SCP electrolytes mainly followed a hopping mechanism coupled with the segmental motion of the polymer chain. Additionally, a dielectric relaxation was found in the high‐frequency region; this was a thermally activated result and also implied the appearance of carrier hopping. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43510.  相似文献   

19.
《Ceramics International》2022,48(20):29951-29958
Lead-free Ba(Zr0.35Ti0.65)O3(short as BZT35) ferroelectric thin films are prepared by RF magnetron sputtering on Pt/Ti/SiO2/Si substrates. Effects of argon-to-oxygen (short as Ar/O2) ratios on phase transition, dielectric and energy storage properties are studied. The research found that all thin films are perovskite structures. With the decrease of Ar/O2, the oxygen vacancies (OVs) in the film are effectively suppressed, which promotes the film to obtain a larger dielectric constant, smaller dielectric loss, and lower leakage current density. The BZT35 film prepared under Ar/O2 = 40:10 has excellent energy storage density (48.03 J/cm3) and efficiency (87.7%) because of its elongated hysteresis loop, the largest polarization difference (ΔP = 22.91 μC/cm2), higher breakdown field strength (Eb = 4.50 MV/cm) and lower leakage current density (J = 2.3 × 10?5 A/cm2) and high power density of 7.94 MW/cm3. In addition, the BZT35 film also has excellent frequency stability (500 Hz-20 kHz). These excellent properties show that BZT35 has very broad application prospects in energy storage.  相似文献   

20.
《Ceramics International》2022,48(13):18884-18890
Dielectric polarization and breakdown strength of dielectrics generally show directly and inversely dependent upon their crystallization, respectively. Therefore, achieving the maximum energy storage density should be expected by controlling the crystallization. A serial of ferroelectric (Ba0.95, Sr0.05)(Zr0.2, Ti0.8)O3 (BSZT) thin films were prepared by the sol-gel method. Effects of annealing temperatures on the microstructure, dielectric and energy storage performance of the films were investigated. The results indicate that BSZT thin films annealed at 600 °C for 30 min demonstrate the highest recoverable energy density and efficiency (50.5 J/cm3 and 91.9%). Such superior energy storage performance is attributed to an ultrahigh electric breakdown strength (6.65 MV/cm) induced by the dense amorphous-nanocrystalline microstructure. This work creates a new way for optimizing the energy storage performance of dielectric thin films via balancing their dielectric polarization and breakdown strength at appropriate heating processing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号