首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
采用密闭微波技术对7种常见人参皂苷单体(Rb1,Rb2,Rb3,Rc,Rd,Re和Rg1)进行降解,通过高效液相色谱(HPLC)分析并与相同条件下非微波降解物对比,研究了密闭微波降解人参皂苷的产物在化学结构及组成上的变化规律,以期快速、高效地制备生物活性高的稀有人参皂苷.结果表明,密闭式微波降解法能够使常见人参皂苷基本降解完全,而相同条件下非微波降解法则基本不发生降解.原人参二醇型人参皂苷易水解掉C20位糖,并发生C20位构型变化,生成20(R)-Rg3和20(S)-Rg3,其中20-(R)为优势构型,C20位羟基进一步脱水产生稀有人参皂苷Rk1和Rg5.同时,20(S/R)-Rg3失去C3位的1分子葡萄糖转化为20(S/R)-Rh2,C20位羟基再进一步脱水生成了Rk2和Rh3.此外,人参皂苷C20位所连的糖种类与构型影响了降解产物中各稀有皂苷的组成与比例,但7种原人参二醇型人参皂苷密闭式微波降解产物中Rg5含量均为最高.密闭式微波降解对原三醇型人参皂苷的转化作用与原二醇型人参皂苷具有相似的规律,人参皂苷Re和Rg1的密闭式微波降解产物中Rh4含量均为最高.本文结果进一步说明在相同的降解条件下,密闭式微波降解法的降解效率远高于高温高压非微波降解法,密闭式微波降解可明显促进常见人参皂苷向稀有人参皂苷转化,因此采用密闭微波技术对常见人参皂苷进行降解可以大量获得稀有人参皂苷.  相似文献   

2.
采用泡沫浮选-固相提取联用法,分离富集三七中的R1,Rg1,Re,Rc,Rb2,Rb3,Rd和Rb1,并用液相色谱法测定其含量,检测灵敏度和选择性都有所提高.对泡沫浮选过程的载气流量、浮选时间、样品溶液pH值和固相提取柱的洗脱条件进行了优化.原人参二醉型皂苷R1,Rc,Rb2,Rb3,Rd和Rb1的回收率在85.0%9...  相似文献   

3.
采用动态泡沫浮选法分离富集人参提取液中的二醇型人参皂苷, 用高效液相色谱法测定6种人参皂苷Rg1, Re, Rb1, Rc, Rb2和Rd的含量. 考察了浮选液pH值、电解质NaCl浓度、载气流量、料液浓度及料液流速对人参皂苷浮选率的影响, 确定了动态泡沫浮选的最佳条件, 并与溶剂提取法、溶剂浮选法以及静态泡沫浮选法进行了比较. 结果表明, 动态泡沫浮选法对二醇型人参皂苷Rb1, Rc, Rb2和Rd具有高富集效率, 回收率分别为93.3%, 98.6%, 96.9%和98.3%, 而对三醇型人参皂苷Rg1和Re的富集效率却很低, 回收率分别为4.8%和4.2%. 该法是分离纯化二醇型人参皂苷的一种简便有效的方法.  相似文献   

4.
利用高效液相色谱-飞行时间质谱联用的方法,分别对人参配伍山楂前后人参皂苷的变化进行分析,同时对人参皂苷Re、Rg1、Rb1、Rd与山楂配伍的水解规律进行系统研究,并与单独煎煮液、仿山楂配伍pH值煎煮液的水解产物进行比较,结果发现人参与山楂配伍后人参皂苷Rg1、Rb1含量明显减少,而人参皂苷Re、Rd、Rg2、Rg3、F2、Rh1含量明显增加,其中人参皂苷Re与山楂配伍后水解产物为人参皂苷20(R)-Rg2、20(S)-Rg2,仿山楂配伍pH值水解产物为人参皂苷20(R)-Rg2、20(S)-Rg2、Rg4、Rg6;人参皂苷Rg1与山楂配伍后水解产物为20(S)-Rh1、20(R)-Rh1,仿山楂pH值水解产物为20(S)-Rh1、20(R)-Rh1、Rh4、Rk3;人参皂苷Rb1与山楂配伍后水解产物为Rd、20(S)-Rg3,仿山楂pH值水解产物为F2、20(S)-Rg3;人参皂苷Rd与山楂配伍后水解产物为F2、20(S)-Rg3、20(R)-Rg3,仿山楂pH值水解产物为20(S)-Rg3、20(R)-Rg3。研究表明,不同人参皂苷和山楂配伍后与仿山楂pH值的水解产物并不相同,人参与山楂配伍改变了人参皂苷成分的种类及含量。本研究为临床方剂中人参与山楂配伍后成分的变化提供物质基础数据。  相似文献   

5.
田七花提取物中22种皂苷类成分的液相色谱-质谱测定   总被引:2,自引:2,他引:0  
在甲酸体系中以高效液相色谱负离子模式电喷雾电离质谱以及碰撞诱导裂解技术研究了12种人参皂苷(Re、Rg1、Rg2、Rg3、Rf、Rb1、Rb2、Rb3、Rc、Rd、Rh1 和Rh2).结果表明,应用皂苷化合物(包括人参皂苷、田七皂苷和绞股蓝皂苷)的质谱及裂解规律可在缺少相应对照品的情况下对其进行可靠的鉴定.在此基础上,对田七花样品以加压溶剂萃取法提取,然后以LC-MS/MS分析,从中鉴定出22种皂苷,其中六糖皂苷Ⅰ和Ⅱ、乙酰基Rb1为首次报道,并且定量测定了其中10种皂苷的含量.  相似文献   

6.
将多壁碳纳米管(MWCNTs)作为选择性吸附材料,用于快速分离人参提取物中的人参皂苷.人参经甲醇溶液超声提取后,提取物中主要为人参皂苷和糖类.人参中的糖类与人参皂苷的极性相近,是提取分离人参皂苷时的主要干扰物. MWCNTs可以快速吸附和脱附人参皂苷,但是对糖类无吸附作用.利用其选择性吸附性能,建立了MWCNTs快速分离人参提取物中人参皂苷和糖类的方法.在优化的分离条件下,MWCNTs对人参提取物中糖类的分离度高于90%,对8种主要人参皂苷[Rb1,Rb2,Rc,Rd,Re,Rg1,20(S)-Rf和Ro]的吸附容量为15. 0~24. 0μg/mg,回收率高于90%.进一步研究表明,人参皂苷在3 min内即可达到吸附和脱附平衡,并且人参皂苷的回收率受脱附溶剂极性的影响.相比于常规材料大孔树脂,MWCNTs可以更快速、简便地分离人参皂苷.  相似文献   

7.
高效液相色谱法测定竹节参中多种人参皂苷含量   总被引:3,自引:0,他引:3  
建立了高效液相色谱法(HPLC)测定竹节参中人参皂苷Rg1、Re、Rb1、Rb2、Rg2、Rd含量的方法.运用二极管阵列检测器(DAD)峰纯度和光谱检索功能,结合保留时间定性,外标峰面积法定量.采用C18反相柱,以乙腈-水梯度洗脱测定了同一批竹节参总皂苷中人参皂苷Rg1、Re、Rd的含量分别为0.81%、0.15%、2.99%,回收率为93.46%~94.02%,含量及回收率的RSD均小于5%,该方法简便、灵敏,精密度及准确度在允许范围内,可作为竹节参皂苷提取物中多种人参皂苷的同时测定方法.  相似文献   

8.
通过体外模拟胃肠道环境,建立一种提取人参皂苷的仿生方法。考察了提取条件对配制的仿生胃液和仿生肠液提取人参皂苷浓度的影响。基于高效液相色谱-三重四极杆质谱的多反应监测模式建立定量分析Re,Rg1,20(S)-Rf,Rb1,Ro,Rc,Rb2,Rd等8种人参皂苷的方法,并比较了仿生和超声两种提取方法的人参皂苷提取效率。结果显示,仿生胃液提取的人参皂苷浓度略高于仿生肠液。优化的仿生提取条件为:液固比15:1,37.0℃回流提取60 min。在优化的条件下,仿生提取人参皂苷浓度比超声提取提高了10.4%~56.9%。仿生提取法不需要使用有机溶剂,是快速提取人参皂苷的有效方法。  相似文献   

9.
采用泡沫浮选法对三七提取液中的人参皂苷Rg1、Re、Rb1和Rd进行了分离富集,并用高效液相色谱法分别测定了含量.考察了浮选液浓度、浮选时间、浮选液pH值、氮气流速和电解质NaCl浓度对浮选效率的影响.结果表明:泡沫浮选法对4种皂苷均有较好的分离富集效果,尤其是对人参二醇型皂苷(Rb1,Rd)效果更为明显.当浮选液浓度为2.0 mg/mL,pH值为2~3,氮气流速为20 mL/min,浮选时间10 min,电解质氯化钠浓度0.20 mol/L,泡沫浮选效果最佳.  相似文献   

10.
9种人参皂苷同时测定方法及在人参质量鉴别中的应用   总被引:1,自引:0,他引:1  
潘坚扬  程翼宇  王毅  肖新月  林瑞超 《分析化学》2005,33(11):1565-1568
建立可同时测定人参皂苷Rg1、Re、Rf、Rg2、Rb1、Re、Rb2、Rb3和Rd含量的反相高效液相色谱(RP—HPLC)方法。采用Agilent Zorbax SB-C18柱,以乙腈-水-0.05%磷酸为流动相,流速1.5mlMmin,柱温35℃,检测波长203nm。在此色谱条件下,各组分在60min内均得到较好分离,回收率符合含量测定要求。运用该方法对不同产地人参进行含量测定,道地药材主根中9种人参皂苷总含量为1.19—1.45%,须根为5.47—6.90%,3个非道地药材主根分别为1.03%、1.04%、1.85%。聚类分析结果表明,根据测定的9种皂苷含量能准确区分人参的主根与须根,并判断其道地性。  相似文献   

11.
Ginsenosides Rg1,Re,Rb1,Rc,Rb2,Rb3,and Rd in different parts of the American ginseng plant were investigated.The extraction process was a pressurized microwave-assisted extraction(PMAE).The seven ginsenosides were separated and determined by high-performance liquid chromatography(HPLC) with a ultraviolet(UV) detector,at 203 nm.The experiment results showed significant variations in the individual ginsenoside contents of the American ginseng in different parts and ages of the plant.The results demonstrated that the leaves,root hairs,and rhizomes of Panax quinquefolius L.contained higher ginsenoside contents,followed by the main roots and stems.The leaves contained dramatically higher levels of ginsenoside Rg1,Rb3,and Rd than the other four parts.Higher contents of Rb1 and Re were present in the main roots,root hairs,and rhizomes.The amount of ginsenoside content in the stems was the lowest.The total content of the seven ginsenosides in main roots,root hairs and rhizomes increased with the age of the plant.In contrast,the ginsenoside contents in the leaves and stems decreased with a year of growth.  相似文献   

12.
A single-laboratory validation study was conducted for the quantification of Rg1, Re, Rb1, Rc, Rb2, and Rd in Asian ginseng (Panax ginseng C.A. Meyer) and North American ginseng (Panax quinquefolius L.) raw materials and finished products by RP-HPLC. The extraction with aqueous methanol was optimized for whole root, powdered extract, and finished product (raw, tablet, and capsule matrixes) test articles. Root materials were treated with base to hydrolyze acidic malonyl ginsenosides to their neutral counterparts. Calibration curves for each ginsenoside were linear over the following ranges (microg/g): 5-394 for Rg1, 15-1188 for Re, 39-2981 for Rb1, 6-499 for Rc, 5-406 for Rb2, and 7-600 for Rd, all having a coefficient of determination (r2) of > or = 99.5%. The LOD for Rg1, Re, Rb1, Rc, Rb2, and Rd was determined to be 1.06, 1.25, 2.19, 1.24, 1.27, and 1.70 microg/mL, respectively. Quantitative determinations performed with eight test materials by two analysts over 3 days (n = 12) resulted in RSDr values that ranged from 1.11 to 7.61%.  相似文献   

13.
Twelve collaborating laboratories assayed 4 products, namely, Panax ginseng, Panax quinquefolius, and 2 ginseng products, for 6 ginsenosides: Rb1, Rb2, Rc, Rd, Re, and Rg1. Collaborators also received a negative control for the recovery study. Pure ginsenosides were provided as reference standards for the liquid chromatography (LC) analysis and the system suitability tests. The LC analyses were performed on the methanol extract using UV detection at 203 nm. For P. ginseng, individual ginsenosides were consistent in their means; repeatability standard deviations (RSDr) ranged from 4.17 to 5.09% and reproducibility standard deviations (RSDR) ranged from 7.27 to 11.3%. For P. quinquefolius, the Rb1 and Rb2 ginsenosides were higher and lower in concentration than P. ginseng, with RSDr values of 3.44 and 6.60% and RSDR values of 5.91 and 12.6% respectively, and other analytes at intermediate precisions. For ginseng commercial products, RSDr values ranged from 3.39 to 8.12%, and RSDR values ranged from 7.65 to 16.5%. A recovery study was also conducted for 3 ginsenosides: Rg1, Re, and Rb1. The average recoveries were 99.9, 96.2, and 92.3%, respectively. The method is not applicable for the determination of Rg1 and Re in ginseng product at levels <300 mg/kg.  相似文献   

14.
A high performance liquid chromatography coupled with electrospray ionization-tandem mass spectrometry( HPLC-ESI-MS/MS) method was developed for the analysis and identification of ginsenosides in the extracts of raw Panax ginseng(RPG) and steamed Panax ginseng at high temperatures(SPGHT). A total of 25 ginsenosides were extracted include of which 10 low-polar ginsenosides, such as ginsenosides F4, Rk3, Rh4, 20S-Rg3, 20R-Rg3 and so on, were identified according to their HPLC retention time and MS/MS data. The results indicated that the low polar ginsenosides were seldom found in RPG. For the exploration of the transformation pattern of the ginsenosides in steam processing, the standards of ginsenosides Re, Rg1, Rb1, Rc, Rb2, Rb3 and Rd were selected and hydrolyzed at a temperature of 120 ℃. The results show that these polar ginsenosides can be converted to low-polar ginsenosides such as Rg2, Rg6, F4, Rk3 and Rg5 by hydrolyzing the sugar chains.  相似文献   

15.
Ginsenosides exhibit diverse biological activities and are major well-known components isolated from the radix of Panax ginseng C.A. Meyer. In the present work, a rapid and facile method for the separation and purification of eight ginsenosides from P. ginseng by high-speed counter-current chromatography coupled with evaporative light scattering detector (HSCCC-ELSD) was successfully developed. The crude samples for HSCCC separation were first purified from ginseng extract using a macroporous resin; the extract was loaded onto a Diaion-HP20 column and fractionated by methanol and water gradient elution. The ginsenosides-protopanaxadiol (PPD) and protopanaxatriol (PPT) fractions were subsequently eluted with 65 and 80% methanol and water gradient elution, respectively. Furthermore, these two fractions were separated by HSCCC-ELSD. The two-phase solvent system used for separation was composed of chloroform/methanol/water/isopropanol at a volume ratio of 4:3:2:1. Each fraction obtained was collected and dried, yielding the following eight ginsenosides: Rg(1), Re, Rf, Rh(1), Rb(1), Rc Rb(2) and Rd. The purity of these ginsenosides was greater than 97% as assessed by HPLC-ELSD, and their structures were characterized by electrospray-ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance spectroscopy. This is the first report regarding the separation of the ginsenosides Rh(1), Rb(2) and Rc from P. ginseng by HSCCC.  相似文献   

16.
The morphological appearance and main ingredients of three Chinese medicines (CMs), P. ginseng, P. quinquefolius, and P. notoginseng of the Panax genus, are similar. However, their pharmacological activities are obviously different. To ensure their safety and efficacy, chemical characteristics of the three CMs were determined using pressurized liquid extraction and HPLC-evaporative light scattering detection. Twelve major saponins, namely notoginsenoside R1, pseudo-ginsenoside F11, ginsenosides Rg1, Re, Rf, Rb1, Rg2, Rc, Rb2, Rb3, Rd, and Rg3 were also quantitatively compared among the three CMs. The contents of total investigated saponins varied considerably, by up to 4-14-fold, between the highest (P. notoginseng, 82.8-136.5 mg/g) and the lowest values (P. ginseng, 10.0-21.1 mg/g). Hierarchical clustering analysis based on the characteristics of 11 investigated saponins (except ginsenoside Rb3) and notoginsenoside R1, pseudo-ginsenoside F11, and the ratio of ginsenoside Rg1/Rb1 and Rg1/Re showed that 56 tested samples were divided into three main clusters in accordance with the three Panax species. Similarity evaluation of chromatograms was also performed using "Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine (Version 2004A)". The results showed that a high degree of similarity existed within individual clusters, but a low degree between the clusters, which could be used for quality control of the three CMs.  相似文献   

17.
A novel, accurate and precise high performance liquid chromatographic method has been developed for simultaneous determination of seven important ginsenosides (Rg1, Re, Rf, Rb1, Rc, Rb2 and Rd) in ginseng products. The separation was performed on a Shim-pack VP-ODS column (5 μm, 150 ×2 mm i.d) with ultraviolet detection at 200 nm by using the improved step gradient elution program. The LODs (S/N = 3) were in the range 0.29 to 1.33 ng μL−1. All calibration curves showed a good linearity (R2 > 0.998) over the ranges tested. The recoveries obtained from spiked sample were between 95.1% and 98.7%. The proposed method was successfully applied to several ginseng pharmaceutical samples. For the sample preparation, a modified extraction method was made to improve the extraction efficiency by evaluation of five solvent systems. The results demonstrated that the extraction with methanol-water (80:20, v/v) is suitable method preferably for the extraction of the ginsenosides. On leave from Department of Pharmacy and Applied Chemistry, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China  相似文献   

18.
This study compared eight major ginsenosides (Rg1, Rg2, Rf, Re, Rd, Rc, Rb1 and Rb2) between Panax sokpayensis and Panax bipinnatifidus collected from Sikkim Himalaya, India. High-performance liquid chromatographic analysis revealed that all major ginsenosides were present in the rhizomes of P. sokpayensis except ginsenoside Rc, whereas ginsenoside Rf, Rc and Rb2 were not detected in P. bipinnatifidus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号