首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
有机氮源对谷氨酸棒杆菌发酵L-缬氨酸的影响   总被引:1,自引:0,他引:1  
以L-缬氨酸生产菌谷氨酸棒杆菌XV0505为供试菌株,研究有机氮源对L-缬氨酸发酵的影响,确定了玉米浆代替豆饼水解液作为有机氮源的发酵工艺,降低了发酵成本;考察不同玉米浆浓度对谷氨酸棒杆菌XV0505发酵生产L-缬氨酸过程中生物量、耗糖速率、L-缬氨酸产量、副产物积累及氨消耗等方面影响,确定了玉米浆的适宜添加浓度;考察了玉米浆与生物素不同配比对L-缬氨酸分批发酵过程的影响,确定了最适生物素添加浓度。与原工艺相比,新工艺的菌体生物量及产酸提高了13.2%和18.5%。  相似文献   

2.
L-乳酸发酵培养基中氮源的优化   总被引:1,自引:0,他引:1  
为减少L-乳酸发酵培养基中的酵母粉用量以降低生产成本,对培养基中的氮源进行了优化。通过单因素试验选择出玉米浆干粉作为与酵母粉进行优化的氮源。从响应面法的分析结果中得出,玉米浆在模型方程的一次和二次项上均比酵母粉显著而两者交互作用不显著,这表明玉米浆部分代替酵母粉是可行的;同时,响应面优化试验确定了两种氮源的最佳配比。当培养基中玉米浆的含量为32.23g/L,酵母粉的含量为3.17g/L时,乳酸的实际最大产量为103.71g/L,乳酸产量有5.3%的少许下降,而酵母粉的用量减少了84%。  相似文献   

3.
以L-色氨酸生产菌Escherichia coli TRP03为供试菌株,研究了多种有机氮源对L-色氨酸发酵的影响。 首先对不同来源的酵母 粉进行了优化试验,确定一种最优酵母粉,摇瓶发酵时L-色氨酸可积累10.21g/L;利用5 L发酵罐发酵1.5~3.0h时,细胞出现二次生 长现象,选择添加氨基酸粉和氯化胆碱促进细胞生长,经优化实验,确定同时添加氨基酸粉2g/L、氯化胆碱0.5g/L可在很大程度上解 决细胞的二次生长问题并提高L-色氨酸产量至44.21g/L;为提高中后期菌体活力及产酸能力,选择在不同发酵时期流加质量浓度为 1g/L的酵母粉、蛋氨酸及谷氨酰胺混合液,确定10h流加时,中后期的活细胞数提高了30.18%,保证了菌体活力。菌株E. coli TRP03经36h发酵,可积累L-色氨酸51.23g/L,较未经任何优化的菌株提高41.91%。  相似文献   

4.
以棉籽蛋白水解液替代豆粕水解液培养谷氨酸棒杆菌LS260发酵生产赖氨酸,对比替代前后发酵效果,确定了棉籽蛋白水解液的最佳添加量。结果表明,在种子培养基、发酵培养基中分别添加0.3%、0.8%的棉籽蛋白水解液,赖氨酸产量提高至265 g/L,比对照批次提高了9.05%,最高糖酸转化率达到69%。  相似文献   

5.
通过Plackett-Burman试验设计、最陡爬坡试验以及响应面分析法,对L-赖氨酸棒杆菌株发酵赖氨酸培养基进行优化。利用Plackett-Burman试验设计来确定影响L-赖氨酸得率的主要因素,结果表明:NaCl、MgSO4·7H2O、玉米浆对L-赖氨酸得率的影响最大。利用最陡爬坡试验确定最大响应区域,在该基础上利用响应面分析法中的Box-Behnken设计,确定培养基的最佳条件为NaCl 2.72%,MgSO4·7H2O0.05%,玉米浆21.13g/L。在该条件下,L-赖氨酸的理论得率为104.75g/L,实际得率为104.60g/L,比优化前的87.93g/L提高18.96%。  相似文献   

6.
棉籽饼粉水解液作为廉价的有机氮源,在发酵领域中具有潜在的应用价值。对棉籽饼粉水解液和豆饼水解液中的氨基氮和氨基酸分析表明两种水解液的氨基氮含量分别为16.38 g/L和19.11 g/L,总氨基酸含量分别为97.78 g/L和91.59 g/L,两者营养成分接近。以L-谷氨酸发酵为例,考察了棉籽饼粉水解液和豆饼水解液作为有机氮源对谷氨酸温度敏感突变株强制发酵和生物素亚适量谷氨酸发酵工艺的影响。结果表明,在相同的发酵工艺下,分别以棉籽饼粉水解液和豆饼水解液作为有机氮源,最终得到的生物量以及L-谷氨酸产量相当。因此,棉籽饼粉水解液可以作为一种新型的有机氮源应用于发酵行业中,具有广阔的工业应用前景。  相似文献   

7.
为提高赖氨酸发酵的产酸浓度、糖酸转化率等发酵指标,通过Plackett-Burman实验设计筛选出培养基中对赖氨酸发酵影响最大的成分为蛋氨酸、糖蜜和谷氨酸,再通过响应面设计实验对这3种成分进行优化,得到最适含量为蛋氨酸0.195g/L,糖蜜15.70mL/L,谷氨酸0.215g/L,赖氨酸浓度从1.90g/100mL提高至2.25g/100mL。发酵培养基中加入10g/L的(NH4)2SO4作为改进氮源,赖氨酸浓度可进一步提高至2.41g/100mL,发酵周期由30h缩短至25h。通过优化培养基和改进氮源,可以显著降低赖氨酸的生产成本,提高产品收益。  相似文献   

8.
利用联合法对柠檬酸发酵废菌体进行细胞破壁处理,通过单因素试验和响应面试验方法对菌体蛋白水解条件进行优化,最终得到菌体蛋白水解最优工艺条件组合为:p H3.0、反应温度为56℃、反应时间为15.5h、酸性蛋白酶添加量为2.5g·100g-1,在此最优水解条件下,水解产物中总氮达到0.82g·100g-1、氨基酸态氮达到0.46g·100g-1。以菌体蛋白水解产物为有机氮源进行坚强芽孢杆菌Ba-2培养,结果显示菌体蛋白水解产物和酵母浸提物效果相当,为发酵废菌体的工业化利用开辟了新的路径。  相似文献   

9.
氮源对L-色氨酸发酵的影响   总被引:1,自引:0,他引:1  
以L-色氨酸生产菌E.coli TRTH为供试菌株,研究了氮源对L-色氨酸发酵的影响。利用30 L发酵罐进行分批补料发酵试验,确定了最佳有机氮源和无机氮源分别为酵母粉和硫酸铵,进一步确定酵母粉和硫酸铵的最佳用量为1 g/L和10 g/L,最后采用NaOH和氨水混合补料控制发酵液中NH4+浓度在120 mmol/L以下,发酵38 h,菌体生物量和L-色氨酸产量分别达到53.42 g/L和32.6 g/L,实现了大肠杆菌的高密度培养。  相似文献   

10.
在青霉素的发酵生产过程中,总氮和氨基酸的含量较低质量波动较大,远远不能满足青霉素菌种发酵生产中代谢的需要,为弥补其不足多采用麸质粉、豆饼粉、棉籽饼分、生物氮素等慢速利用氮源作为补充,但其效果并不理想长期以来我们一直在寻找一种总氮含量高氨基酸组合齐全,能对发酵过程中酶活性的激发起到较好作用的替代氮源。  相似文献   

11.
腺苷在生理生化过程中起着重要的调控作用,具有较高的药用价值,在医药领域有着广泛的应用.主要研究了玉米浆、豆饼水解液和酵母粉等有机氮源对腺苷发酵产苷的影响.在5L发酵罐上通过添加不同浓度的有机氮源,考察枯草杆菌XGL在不同条件下的菌体生长与产苷情况.通过实验优化,获得最佳的有机氮源为玉米浆20 mL/L、豆饼水解液30 mL/L、酵母粉16 g/L,在此条件下发酵50 h,腺苷最高产量达到41.6 g/L,比初始发酵条件提高65.1%.  相似文献   

12.
以黄我短杆菌(Brevibacteriumflavum)WSHL1为产生菌,了确定了2.5L罐赖氨酸流加发酵中氮源浓度的初始值及过程控制模式。首先分析了不同初始有机氮源浓度对赖氨酸流加发酵过程菌体生长,产物积累以及微生物稳定性的影响,并得到了适宜的初始有机氮源浓度为20g/L;在流加糖液中添加10g/L的有机氮源使发酵产酸和产物对耗糖转化率分别达到109.0g/L和38.5%。在分析PH值反馈控制  相似文献   

13.
为了提高以糖蜜为碳源产L-赖氨酸的能力,本文比较了用酸、酶制剂等方法处理糖蜜后对产L-赖氨酸的影响,确定了酶制剂处理为糖蜜的最佳处理方法,以及酶制剂处理糖蜜的最佳条件。经试验验证,利用酶制剂处理糖蜜后,葡萄糖含量达到145g/L,酶处理糖蜜的最佳条件为:pH5.0,室温,酶制剂添加量0.025%,处理时间5h。在最佳处理条件下处理糖蜜,L-赖氨酸产量比不处理提高了58.3%,比酸处理提高了21.8%。  相似文献   

14.
以枯草芽孢杆菌(Bacillus subtilis)HX1026为研究对象,研究大豆蛋白胨、酵母粉、玉米浆干粉和豆粕水解液4种有机氮源对 发酵法生产肌苷产量的影响。 结果表明,以豆粕水解液为有机氮源时,肌苷产量高于其他有机氮源,其中山东1号豆粕水解液摇瓶发 酵肌苷产量最高,达到31.2 g/L。在20 L发酵罐验证实验中,肌苷产量达到51.2 g/L,发酵罐中肌苷晶体的形成过程清晰可见,进一步证 实山东1号是最适合B. subtilis HX1026发酵生产肌苷的有机氮源。 山东1号的主要技术参数如总氮含量、氨基氮含量、氨基氮/总氮比 值分别是3.22%、2.06%、0.639,可以作为肌苷发酵生产过程中选择有机氮源的标准,以确保肌苷发酵过程的稳定性。  相似文献   

15.
在摇瓶条件下对赖氨酸发酵的供氧、初糖浓度等进行了研究,并对氮源硫酸铵、营养因素玉米浆和L-苏氨酸进行了响应面分析试验,得到最优的摇瓶发酵条件.在此基础上,进行了7L自控发酵罐赖氨酸发酵试验.研究结果表明,在7L发酵罐中发酵64 h左右,积累赖氨酸盐酸盐可达161 g/L,糖酸转化率58.3%.  相似文献   

16.
为考察L-精氨酸/L-赖氨酸及pH对乳清蛋白结构和凝胶性质的影响,研究2种碱性氨基酸对乳清蛋白热诱导凝胶质构及持水性的影响。研究表明,L-精氨酸/L-赖氨酸对蛋白聚集体大小及ζ-电位(pH 2.0下L-精氨酸处理除外)有降低的趋势;紫外、荧光光谱显示在酸性条件下,碱性氨基酸促进蛋白分子结构展开,而在碱性条件下则使蛋白结构倾向折叠。不同pH(2.0、5.2、7.59、9.74和10.76)的蛋白溶液,每个pH的样品分别含有质量浓度1、3 g/L L-精氨酸或L-赖氨酸,90℃加热30 min后能够形成颜色随pH变化而变化的凝胶。化学作用力分析则显示2种氨基酸通过改变蛋白分子间作用而显著改变质构特性和持水性。总之,在pH对蛋白结构和凝胶功能性影响的基础上,L-精氨酸/L-赖氨酸能够进一步提高凝胶质构特性与持水性。  相似文献   

17.
通过分析黄色短杆菌XV0505发酵生产L-缬氨酸的过程,得知在菌体生长期和快速产酸期氮源对L-缬氨酸发酵的影响不同。以黄色短杆菌XV0505为供试菌株,研究了不同氮源种类及不同氮源浓度对L-缬氨酸发酵过程的影响,选定了以豆饼水解液和硫酸铵为氮源,并确定了合适的初始氮源浓度。在初始氮源浓度相同的情况下,考察了间歇流加补氮策略、恒氮源浓度补氮策略和幂函数流加补氮策略对L-缬氨酸发酵的影响,研究发现,幂指数补氮策略可减少频繁的取样及铵浓度检测,在缺乏在线监测系统和反馈自控系统的情况下,将发酵体系中氮源浓度维持在合适值,既可适度促进菌体生长,又可使L-缬氨酸的产量得到进一步提高。在最优的氮源添加策略下,在30 L发酵罐发酵60 h,发酵液中L-缬氨酸可达63.17 g/L,糖酸转化率24.69%。  相似文献   

18.
利用旋转回归法研究氮源对L-苏氨酸产量的影响并拟合出回归方程,探索L-苏氨酸发酵的最佳氮源及其用量.经回归分析表明,培养基中硫酸铵、酵母粉的含量及其配比对L-苏氨酸产量有显著影响,通过岭脊分析寻优得出:硫酸铵最佳浓度为17.66g/L、酵母粉最佳浓度为2.51 g/L.在此优化条件用10L自动发酵罐补料分批发酵38h,L-苏氨酸产量可达119.7g/L,糖酸转化率为47.9%.  相似文献   

19.
考察以0.55 g/100 mL L-精氨酸(精氨酸)/L-赖氨酸(赖氨酸)+1.5 g/100 mL NaCl溶液为提取剂提取的 鸡胸肉蛋白的凝胶特性。差示扫描量热法和动态流变结果表明:与对照组相比,添加精氨酸/赖氨酸的提取剂所对 应的蛋白提取物在加热过程中具有3 个明显的变性温度点和4 个明显的温度区间,其在加热和冷却的过程中均具有 更高的储能模量;添加精氨酸/赖氨酸的提取剂所对应的蛋白提取物形成的蛋白凝胶具有连续的三维网络结构、更 高的保水性和凝胶强度以及更低的蒸煮损失。因此,提取剂中包含精氨酸/赖氨酸的蛋白提取物具有更好的凝胶特 性,所形成的凝胶具有更好的保水和质构等特性。  相似文献   

20.
分别使用酵母浸粉和混合氨基酸作为模拟葡萄汁(36 °Bx)的有机氮源发酵葡萄酒,以保证葡萄酒的正常发酵和最终产品品 质。 通过测定发酵过程中的二氧化碳生成量、还原糖、可同化氮、甘油和挥发性化合物含量变化,比较酵母浸粉和混合氨基酸对葡萄酒 品质的影响。 结果表明,使用酵母浸粉耗还原糖量为295.7 g/L,生成乙醇97.20 g/L、甘油26.50 g/L、乙酸1.08 g/L和乙酸乙酯46.05 mg/L, 与使用混合氨基酸相比,多消耗还原糖130.47 g/L,多生成乙醇46.14 g/L、甘油7.95 g/L和乙酸0.54 g/L,增幅分别为78.95%、90.38%、 42.84%和99.35%。 使用酵母浸粉比混合氨基酸的发酵程度大,速度快。 因此,可用适量酵母浸粉替代混合氨基酸作为葡萄酒发酵的 氮源补充。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号