首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 906 毫秒
1.
为了探讨在混凝土中同时掺入粉煤灰、矿渣、硅灰及煤矸石等材料的特性变化及它们之间的作用机理,采用宁夏地区工业废料(煤矸石、粉煤灰、矿渣)、硅粉作为高强高性能混凝土的掺合料,通过混凝土配合比的正交试验,确定了混凝土最优配合比,并制备出工作性能较好,强度达到C60等级的高强高性能混凝土.试验结果表明:复合硅粉、粉煤灰、矿渣和煤矸石掺入混凝土中,一方面改善了混凝土内部孔隙结构、级配,并且不同掺合料产生复合叠加效应,使得混凝土更加密实;另一方面达到废物利用、绿色环保、节约成本的效果.  相似文献   

2.
为研究自燃煤矸石、矿渣对混凝土力学性能和抗渗性能的影响,进行混凝土抗压强度和抗渗试验.试验将自燃煤矸石掺量、矿渣掺量、水胶比、自燃煤矸石细度和砂率作为影响因素,通过正交试验的方法,以混凝土的工作性与抗压强度为考核指标,确定最优组,并与基准组混凝土的抗压强度和抗渗性进行比较.结果表明,最优组混凝土的28 d抗压强度比基准组提高了15.9%,56 d抗压强度提高了5.6%,其抗渗性能比基准组提高了约60%.  相似文献   

3.
高性能混凝土低水胶比和掺加矿物掺合料的特点使得混凝土收缩加剧并且引起早期裂缝问题.采用粉煤灰和硅灰作为纤维混凝土的掺合料,通过混凝土配合比的正交试验,利用极差和方差分析,研究了水胶比、砂率、硅灰掺量、生态纤维掺量和粉煤灰掺量对混凝土7,28 d抗压强度的影响.分析了粉煤灰采用超量取代的方法对混凝土的影响.在保证混凝土抗压强度的基础上,优选混凝土配合比,进行混凝土干燥收缩试验.试验结果表明,生态纤维对混凝土强度影响不明显,与矿物掺合料复掺可显著抑制混凝土的干燥收缩.  相似文献   

4.
为了探讨在混凝土中掺入钢渣、粉煤灰、矿渣等材料对混凝土冻融破坏的作用机理,采用宁夏地区工业废料作为混凝土的掺合料,通过正交试验及混凝土抗冻性能试验,确定出了混凝土最优配合比为A1B2C3D3E3.由宏观和微观试验结果表明:优化钢渣、粉煤灰、矿渣掺量后制备的复合混凝土强度增长显著;经100次的冻融试验,抗冻效果比基准混凝土显著.  相似文献   

5.
C80机制砂泵送混凝土的配制及其影响因素   总被引:9,自引:2,他引:9  
以机制砂为细骨料,对C80泵送混凝土的配合比和掺合料进行了优化、着重对机制砂的石粉含量和砂率等因素对混凝土工作性和强度的影响规律进行了探讨:结果表明:机制砂混凝土合理砂率应略大于相应的河砂混凝土,且存在最佳砂率(45%);机制砂中一定量的石粉对混凝土强度和工作性有促进作用,在7%石粉含量情况下,C80机制砂混凝土强度和工作性均达到最佳。  相似文献   

6.
为了研究纳米SiO2对高性能混凝土工作性和力学性能的影响,将纳米SiO2掺入到高性能混凝土中,通过对基准混凝土,粉煤灰混凝土,纳米SiO2、粉煤灰混凝土进行对比试验,研究纳米SiO2对高性能混凝土的坍落度、抗压强度、劈裂抗拉强度的影响.结果表明:将纳米SiO2掺入到混凝土中,其抗压强度、劈裂抗拉强度、拉压比和工作性都有所提高;纳米SiO2和矿物掺合料具有叠加效应,对混凝土早期强度特别是7 d的强度具有明显的降脆增韧作用.  相似文献   

7.
高性能混凝土配制的技术途径与配合比设计   总被引:1,自引:0,他引:1  
从建筑工程对混凝土性能客观要求的角度出发,提出了高性能混凝土的基本内涵,即高强性(50MPa以上)、高工作性(坍落度不小于120mm)和耐久性(500~1000年使用期限),提出了配制高性能混凝土的主要技术途径是掺入活性矿物掺合料和高效减水剂,分析了活性矿物掺合料及高效减水剂提高混凝土性能的机理。文章首次提出以强度、工作度和渗透性为指标进行高性能混凝土配合比的设计方法。  相似文献   

8.
轻集料混凝土的抗渗性能研究   总被引:1,自引:0,他引:1  
利用快速氯离子渗透试验和溶液气压法研究了粉煤灰、矿渣和硅灰三种矿物掺合料对轻集料混凝土抗渗性能的影响.结果表明,掺合料的加入能够显著提高轻集料混凝土的抗渗性能;利用SEM、孔结构试验探讨了掺合料提高轻集料混凝土抗渗性的作用机理,研究结果为深入开展高性能轻集料混凝土的研究提供了参考.  相似文献   

9.
为提高钢渣的利用率,利用钢渣与矿渣作掺合料、钢渣作骨料制备成钢渣砂替代碎石,制备钢渣高强混凝土。通过正交试验研究了水灰比、砂率、钢渣砂掺量、掺合料掺量 4种因素对钢渣混凝土工作性能、强度的影响,得出了钢渣混凝土最适宜配合比。采用电通量法研究了最适宜配比钢渣混凝土的氯离子渗透性,其较基准混凝土要好。通过 SEM照片对最适宜配合比钢渣混凝土 3、28d的微观结构进行了分析,水化产物较基准混凝土密实。钢渣、矿渣等应用到混凝土中不仅具有环保节能的效果,还能改善混凝土的性能,具有良好的经济和社会效益。  相似文献   

10.
大掺量混合材高性能混凝土的制备及强度特性   总被引:1,自引:0,他引:1  
在固定用水量为130 kg/m3下,研究了粉煤灰、磨细矿渣和硅灰对水泥替代量为30%、50%、70%,水胶比为0.33的高性能混凝土的制备。探讨了粉煤灰、硅灰和矿渣对新拌混凝土流动性和抗压强度的影响。在低水胶比情况下,粉煤灰、磨细矿渣和硅灰大掺量复掺,可制备得到工作性良好、早期强度满足要求和后期强度有极好发展的高性能混凝土;在高效减水剂的作用下,在大掺量混合材混凝土中以硅灰、磨细矿渣取代部分粉煤灰,可以有效提高大掺量混凝土的早期强度,进一步改善新拌混凝土的工作性。  相似文献   

11.
针对掺加煤矸石的泡沫混凝土,测定其抗压强度和抗折强度,并确定了自然煤矸石活性激发的最佳温度条件;研究了煤矸石、石灰、水胶比和发泡剂对自然煤矸石泡沫混凝土综合性能的影响规律,得出泡沫混凝土各组分的最佳掺量.  相似文献   

12.
主要研究自燃煤矸石粉对胶凝材料体系需水性的影响,并通过与粉煤灰的对比与复合,进一步确定自燃煤矸石粉的需水性.试验结果表明,随着自燃煤矸石粉取代水泥量的增加,胶凝材料体系需水量逐渐增大.自燃煤矸石粉与粉煤灰复合后,胶凝材料体系的需水性比单掺自燃煤矸石粉减小,其需水性趋势随自燃煤矸石在粉体中所占比例的增加而逐渐增大.在高效减水剂存在的情况下,掺复合粉的胶凝材料浆体匀质性优于空白水泥与单掺粉煤灰.  相似文献   

13.
自密实混凝土是一种具有高工作性能的高性能混凝土。本文探讨了自密实混凝土工作性能的评定方法,并对掺加磨细矿渣的自密实混凝土进行了研究。通过分析磨细矿渣含量、胶凝材料总量、砂率、减水剂掺量对自密实混凝土流动性和强度的影响,配制了高工作性能和力学性能的自密实混凝土,为掺加磨细矿渣的高强自密实混凝土配合比设计提供了依据。  相似文献   

14.
配制了一批不同龄期的C30矿渣粉煤灰混凝土,进行全面系统的试验研究与对比分析。研究了粉煤灰、矿渣和减水剂对混凝土强度性能的影响。试验结果表明:C30矿渣粉煤灰混凝土的矿渣最佳掺量为20%~30%;掺入减水剂后,更使混凝土的孔隙率减小、界面改善、泌水性降低并易于施工;同时,混凝土的抗压强度得到明显提高。  相似文献   

15.
试验采用大掺量矿物掺和料以及聚羧酸高效减水剂,研究了绿色混凝土的早期抗裂性能.结果表明:随着胶凝材料用量的增加,裂缝面积及最大裂缝宽度增大;同胶凝材料用量时,单掺矿粉系列混凝土的开裂面积达到单掺粉煤灰系列的2~4倍,最大裂缝宽度约达到粉煤灰系列的2倍;提高水泥用量或复掺超细矿粉时,混凝土强度提高,但早期抗裂性能降低;复掺抗裂防水剂时,早期养护不充分条件下,混凝土的抗裂性能显著降低;早期养护对绿色混凝土的抗裂性能有较大的影响,实际生产中采用绿色混凝土,将表现出优异的抗裂性能.  相似文献   

16.
以杂填土、钢渣、矿渣微粉为原料,采用土体固化技术混拌制备钢渣-杂填土基层材料。开展钢渣、混凝土破碎料、素土等主料对基层材料强度的耦合影响试验,构建回归模型,得到主料最优掺入比例,试验验证表明,回归模型预测值误差小于2%;以钢渣、混凝土破碎料、水泥、固化剂为因素开展正交试验,得到的最优结果与强度耦合影响试验基本一致,从而确定钢渣-杂填土最优配合比。最优配合比试件试验结果表明:钢渣-杂填土强度随龄期增长显著提升,30 d高温水浴膨胀率仅为1.03%。X射线衍射分析(XRD)及扫描电子显微镜(SEM)测试表明:矿渣微粉中SiO2与钢渣中f-CaO反应生成水化硅酸钙(C-S-H)凝胶,同时发现土壤固化剂对土体的改性可有效抑制钢渣膨胀;C-S-H凝胶填充于混凝土破碎料、钢渣、土颗粒间,增加了钢渣-杂填土基层材料密实度,使其强度得以提高。  相似文献   

17.
选取2种超细矿粉,采用正交试验方法,制备工作性良好的高性能混凝土,研究了超细矿粉代替硅灰对高性能混凝土强度的影响.结果表明:用超细矿粉替代硅灰配制的高性能混凝土强度得到明显提高,某些配比的试验效果优于硅灰,是硅灰优良的替代品.  相似文献   

18.
特细砂配制低强度混凝土的试验研究   总被引:1,自引:1,他引:0  
针对邯郸地区丰富的特细砂资源,采用不同水胶比(0.8、0.7、0.6、0.5)来进行对比试验,研究特细砂砂率对低强度混凝土和易性及抗压强度的影响。通过大量试验结果表明:特细砂砂率对混凝土和易性影响显著,尤其对于水胶比较低的混凝土影响程度更大;水胶比不变,混凝土28 d的抗压强度随着砂率的增加而上升;当增加到某范围值时,混凝土28 d抗压强度则随着砂率的增加而略有下降;选择合理的砂率,特细砂可以配制出符合工作性能和强度要求的混凝土。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号