首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Let \( {\left( {{\epsilon_i}} \right)_{i \in \mathbb{Z}}} \) be i.i.d. random elements in a separable Banach space \( \mathbb{E} \), and let \( \mathop {\left( {{a_i}} \right)}\nolimits_{i \in \mathbb{Z}} \) be continuous linear operators from \( \mathbb{E} \) to a Banach space \( \mathbb{F} \) such that \( \sum\nolimits_{i \in \mathbb{Z}} {\left\| {{a_i}} \right\|} \) is finite. We prove that the linear process \( \mathop {\left( {{X_n}} \right)}\nolimits_{n \in \mathbb{Z}} \) defined by \( {X_n}: = \sum\nolimits_{i \in \mathbb{Z}} {{a_i}} \left( {{\epsilon_{n - i}}} \right) \) inherits from \( \mathop {\left( {{\epsilon_i}} \right)}\nolimits_{i \in \mathbb{Z}} \) the central limit theorem and functional central limit theorems in various Banach spaces of \( \mathbb{F} \)-valued functions, including Hölder spaces.  相似文献   

2.
In this paper, we show that if the volume sum \( \sum\nolimits_{h = 1}^\infty {{h^{n - 1}}{\Psi^t}(h)} \) converges for a function ψ (not necessarily monotonic), then the set of points \( \left( {x,{w_1}, \ldots, {w_{t - 1}}} \right) \in {\mathbb R} \times {{\mathbb Q}_{{p_1}}} \times \ldots \times {{\mathbb Q}_{{p_{t - 1}}}} \) that simultaneously satisfy the inequalities \( \left| {P(x)} \right| < \Psi (H) {\text{and}} {\left| {P\left( {{w_i}} \right)} \right|_{{p_i}}} < \Phi (H), 1 \leqslant i \leqslant t - 1 \), for infinitely many integer polynomials P has measure zero.  相似文献   

3.
The main purpose of this paper is to establish the Hormander-Mihlin type theorem for Fourier multipliers with optimal smoothness on k-parameter Hardy spaces for k≥ 3 using the multiparameter Littlewood-Paley theory. For the sake of convenience and simplicity, we only consider the case k = 3, and the method works for all the cases k≥ 3:■where x =(x_1,x_2,x_3)∈R~(n_1)×R~(n_2)×R~(n_3) and ξ =(ξ_1,ξ_2,ξ_3)∈R~(n_1)×R~(n_2)×R~(n_3). One of our main results is the following:Assume that m(ξ) is a function on R~(n_1+n_2+n_3) satisfying ■ with s_i n_i(1/p-1/2) for 1≤i≤3. Then T_m is bounded from H~p(R~(n_1)×R~(n_2)×R~(n_3) to H~p(R~(n_1)×R~(n_2)×R~(n_3)for all 0 p≤1 and ■ Moreover, the smoothness assumption on s_i for 1≤i≤3 is optimal. Here we have used the notations m_(j,k,l)(ξ)=m(2~jξ_1,2~kξ_2,2~lξ_3)Ψ(ξ_1)Ψ(ξ_2)Ψ(ξ_3) and Ψ(ξ_i) is a suitable cut-off function on R~(n_i) for1≤i≤3, and W~(s_1,s_2,s_3) is a three-parameter Sobolev space on R~(n_1)×R~(n_2)× R~(n_3).Because the Fefferman criterion breaks down in three parameters or more, we consider the L~p boundedness of the Littlewood-Paley square function of T_mf to establish its boundedness on the multi-parameter Hardy spaces.  相似文献   

4.
The Schur-Szegö composition of two polynomials \(f\left( z \right) = \sum\nolimits_{j = 0}^n {{A_j}{z^j}} \) and \(g\left( z \right) = \sum\nolimits_{j = 0}^n {{B_j}{z^j}} \), both of degree n, is defined by \(f * g\left( z \right) = \sum\nolimits_{j = 0}^n {{A_j}{B_j}{{\left( {\begin{array}{*{20}{c}}n \\ j \end{array}} \right)}^{ - 1}}{z^j}} \). In this paper, we estimate the minimum and the maximum of the modulus of f * g(z) on z = 1 and thereby obtain results analogues to Bernstein type inequalities for polynomials.  相似文献   

5.
We prove that every smooth complete intersection \(X=X_{d_{1}, \ldots , d_{s}}\subset \mathbb {P}^{\sum _{i=1}^{s}d_{i}}\) defined by s hypersurfaces of degree \(d_{1}, \ldots , d_{s}\) is birationally superrigid if \(5s +1\le \frac{2(\sum _{i=1}^{s}d_{i}+1)}{\sqrt{\prod _{i=1}^{s}d_{i}}}\). In particular, X is non-rational and \({{\mathrm{Bir}}}(X)={{\mathrm{Aut}}}(X)\). We also prove birational superrigidity of singular complete intersections with similar numerical condition. These extend the results proved by Tommaso de Fernex.  相似文献   

6.
As a generalization to the heat semigroup on the Heisenberg group, the diffusion semigroup generated by the subelliptic operator L :=1/2 sum from i=1 to m X_i~2 on R~(m+d):= R~m× R~d is investigated, where X_i(x, y) = sum (σki?xk) from k=1 to m+sum (((A_lx)_i?_(yl)) from t=1 to d,(x, y) ∈ R~(m+d), 1 ≤ i ≤ m for σ an invertible m × m-matrix and {A_l}_1 ≤ l ≤d some m × m-matrices such that the Hrmander condition holds.We first establish Bismut-type and Driver-type derivative formulas with applications on gradient estimates and the coupling/Liouville properties, which are new even for the heat semigroup on the Heisenberg group; then extend some recent results derived for the heat semigroup on the Heisenberg group.  相似文献   

7.
We study k th order systems of two rational difference equations
$ x_n = \frac{{\alpha + \sum\nolimits_{i = 1}^k {\beta _i x_{n - 1} + } \sum\nolimits_{i = 1}^k {\gamma _i y_{n - 1} } }} {{A + \sum\nolimits_{j = 1}^k {B_j x_{n - j} + } \sum\nolimits_{j = 1}^k {C_j y_{n - j} } }}, y_n = \frac{{p + \sum\nolimits_{i = 1}^k {\delta _i x_{n - i} + } \sum\nolimits_{i = 1}^k {\varepsilon _i y_{n - i} } }} {{q + \sum\nolimits_{j = 1}^k {D_j x_{n - j} + } \sum\nolimits_{j = 1}^k {E_j y_{n - j} } }} n \in \mathbb{N} $ x_n = \frac{{\alpha + \sum\nolimits_{i = 1}^k {\beta _i x_{n - 1} + } \sum\nolimits_{i = 1}^k {\gamma _i y_{n - 1} } }} {{A + \sum\nolimits_{j = 1}^k {B_j x_{n - j} + } \sum\nolimits_{j = 1}^k {C_j y_{n - j} } }}, y_n = \frac{{p + \sum\nolimits_{i = 1}^k {\delta _i x_{n - i} + } \sum\nolimits_{i = 1}^k {\varepsilon _i y_{n - i} } }} {{q + \sum\nolimits_{j = 1}^k {D_j x_{n - j} + } \sum\nolimits_{j = 1}^k {E_j y_{n - j} } }} n \in \mathbb{N}   相似文献   

8.
We show a joint denseness theorem for values of a general Dirichlet series \( \sum\nolimits_{n = 1}^\infty {{{\text{a}}_n}{{\text{e}}^{ - {\lambda_n}s}}} \) in a certain class and its derivatives, where the numbers {λ n } are not necessarily linearly independent over \( \mathbb{Q} \).  相似文献   

9.
It is established that H. Bohr’s inequality \(\sum\nolimits_{k = 0}^\infty {\left| {{{f^{\left( k \right)} \left( 0 \right)} \mathord{\left/ {\vphantom {{f^{\left( k \right)} \left( 0 \right)} {\left( {2^{{k \mathord{\left/ {\vphantom {k 2}} \right. \kern-\nulldelimiterspace} 2}} k!} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2^{{k \mathord{\left/ {\vphantom {k 2}} \right. \kern-\nulldelimiterspace} 2}} k!} \right)}}} \right| \leqslant \sqrt 2 \left\| f \right\|_\infty }\) is sharp on the class H .  相似文献   

10.
In this paper we study the first and tiie third boundary value problems for the elliptic equation \[\begin{array}{l} \varepsilon \left( {\sum\limits_{i,j = 1}^m {{d_{i,j}}(x)\frac{{{\partial ^2}u}}{{\partial {x_i}\partial {x_j}}} + \sum\limits_{i = 1}^m {{d_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + d(x)u} } } \right) + \sum\limits_{i = 1}^m {{a_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + b(x) + c} \ = f(x),x \in G(0 < \varepsilon \le 1), \end{array}\] as the degenerated operator bas singular points, where \[\sum\limits_{i,j = 1}^m {{d_{i,j}}(x){\xi _i}{\xi _j}} \ge {\delta _0}\sum\limits_{i = 1}^m {\xi _i^2} ,({\delta _0} > 0,x \in G).\] The uniformly valid asymptotic solutions of boundary value problems have been obtained under the condition of \[\sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} > 0,or} \sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} < 0} ,\] where \(n = ({n_1}(x),{n_2}(x), \cdots ,{n_m}(x))\) is the interior normal to \({\partial G}\).  相似文献   

11.
In the present paper, we deal with the existence and multiplicity of solutions for the following impulsive fractional boundary value problem
$$\begin{aligned} {_{t}}D_{T}^{\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) + a(t)|u(t)|^{p-2}u(t)= & {} f(t,u(t)),\;\;t\ne t_j,\;\;\hbox {a.e.}\;\;t\in [0,T],\\ \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} I_j(u(t_j))\;\;j=1,2,\ldots ,n,\\ u(0)= & {} u(T) = 0. \end{aligned}$$
where \(\alpha \in (1/p, 1]\), \(1<p<\infty \), \(0 = t_0<t_1< t_2< \cdots< t_n < t_{n+1} = T\), \(f:[0,T]\times \mathbb {R} \rightarrow \mathbb {R}\) and \(I_j : \mathbb {R} \rightarrow \mathbb {R}\), \(j = 1, \ldots , n\), are continuous functions, \(a\in C[0,T]\) and
$$\begin{aligned} \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right) \\&- {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^-\right) \right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right)= & {} \lim _{t \rightarrow t_j^+} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j^-)\right)= & {} \lim _{t\rightarrow t_j^-}{_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) . \end{aligned}$$
By using variational methods and critical point theory, we give some criteria to guarantee that the above-mentioned impulsive problems have at least one weak solution and a sequences of weak solutions.
  相似文献   

12.
Let {x n } be a sequence of complex numbers and let \({\Delta^nx_j = \sum\nolimits_{k=0}^{n} (-1)^k\break\left(\begin{array}{l}n\\ k\\\end{array} \right)x_{n-k+j}}\) . In this paper, we will show that if \({ |x_n| = O(n^k)}\) , as n → ∞ for some positive integer k, and \({n|\Delta^n x_j|^{\frac{1}{n}} \to 0}\) as n→ ∞, then \({\Delta^{k+1} x_j = 0}\) . More importantly, applications to the orbits of operators and invariant subspace problem are also given; this helps to improve former results obtained by Gelfand–Hille, Mbekhta–Zemánek and others.  相似文献   

13.
We investigate a class of fractional Hardy type operators \({\mathscr{H}_{{\beta _1},{\beta _2}, \ldots ,{\beta _m}}}\) defined on higher-dimensional product spaces \({\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}} \times \cdots \times {\mathbb{R}^{{n_m}}}\) and use novel methods to obtain their sharp bounds. In particular, we optimize the result due to S. M. Wang, S. Z. Lu, and D. Y. Yan [Sci. China Math., 2012, 55(12): 2469–2480].  相似文献   

14.
Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-1∑j=1^n(Xj -^-Xn)^2)^1/2 where ^-Xn = n^-1 ∑j=1^nXj. In this paper we show a law of iterated logarithm for rescaled range statistics Q(n) for AR(1) model.  相似文献   

15.
In this paper, we consider the general space–time fractional equation of the form \(\sum _{j=1}^m \lambda _j \frac{\partial ^{\nu _j}}{\partial t^{\nu _j}} w(x_1, \ldots , x_n ; t) = -c^2 \left( -\varDelta \right) ^\beta w(x_1, \ldots , x_n ; t)\), for \(\nu _j \in \left( 0,1 \right] \) and \(\beta \in \left( 0,1 \right] \) with initial condition \(w(x_1, \ldots , x_n ; 0)= \prod _{j=1}^n \delta (x_j)\). We show that the solution of the Cauchy problem above coincides with the probability density of the n-dimensional vector process \(\varvec{S}_n^{2\beta } \left( c^2 \mathcal {L}^{\nu _1, \ldots , \nu _m} (t) \right) \), \(t>0\), where \(\varvec{S}_n^{2\beta }\) is an isotropic stable process independent from \(\mathcal {L}^{\nu _1, \ldots , \nu _m}(t)\), which is the inverse of \(\mathcal {H}^{\nu _1, \ldots , \nu _m} (t) = \sum _{j=1}^m \lambda _j^{1/\nu _j} H^{\nu _j} (t)\), \(t>0\), with \(H^{\nu _j}(t)\) independent, positively skewed stable random variables of order \(\nu _j\). The problem considered includes the fractional telegraph equation as a special case as well as the governing equation of stable processes. The composition \(\varvec{S}_n^{2\beta } \left( c^2 \mathcal {L}^{\nu _1, \ldots , \nu _m} (t) \right) \), \(t>0\), supplies a probabilistic representation for the solutions of the fractional equations above and coincides for \(\beta = 1\) with the n-dimensional Brownian motion at the random time \(\mathcal {L}^{\nu _1, \ldots , \nu _m} (t)\), \(t>0\). The iterated process \(\mathfrak {L}^{\nu _1, \ldots , \nu _m}_r (t)\), \(t>0\), inverse to \(\mathfrak {H}^{\nu _1, \ldots , \nu _m}_r (t) =\sum _{j=1}^m \lambda _j^{1/\nu _j} \, _1H^{\nu _j} \left( \, _2H^{\nu _j} \left( \, _3H^{\nu _j} \left( \ldots \, _{r}H^{\nu _j} (t) \ldots \right) \right) \right) \), \(t>0\), permits us to construct the process \(\varvec{S}_n^{2\beta } \left( c^2 \mathfrak {L}^{\nu _1, \ldots , \nu _m}_r (t) \right) \), \(t>0\), the density of which solves a space-fractional equation of the form of the generalized fractional telegraph equation. For \(r \rightarrow \infty \) and \(\beta = 1\), we obtain a probability density, independent from t, which represents the multidimensional generalization of the Gauss–Laplace law and solves the equation \(\sum _{j=1}^m \lambda _j w(x_1, \ldots , x_n) = c^2 \sum _{j=1}^n \frac{\partial ^2}{\partial x_j^2} w(x_1, \ldots , x_n)\). Our analysis represents a general framework of the interplay between fractional differential equations and composition of processes of which the iterated Brownian motion is a very particular case.  相似文献   

16.
The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in \({\mathbb {R}}^{n}\). In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let \(\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}\), \(0\le \beta <n\) and \(\tau >0\). Then there exists a constant \(C=C\left( n,\beta \right) >0\) such that for all \(0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}\) and \(u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} \) with the affine energy \(~{\mathcal {E}}_{n}\left( u\right) <1\), we have
$$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$
Moreover, the constant \(\left( 1-\frac{\beta }{n}\right) \alpha _{n}\) is the best possible in the sense that there is no uniform constant \(C(n, \beta )\) independent of u in the above inequality when \(\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}\). Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let \(0\le \beta <2m\) and \(\tau >0\). Then there exists a constant \(C=C\left( m,\beta ,\tau \right) >0\) such that
$$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$
for all \(0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\). When \(\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)\), the supremum is infinite. In the above, we use
$$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$
The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation
$$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$
where the nonlinearity f has the critical exponential growth.
  相似文献   

17.
In this paper, we consider the ground-states of the following M-coupled system:
$$\left\{ {\begin{array}{*{20}{c}}{ - \Delta {u_i} = \sum\limits_{j = 1}^M {{k_{ij}}\frac{{2{q_{ij}}}}{{2*}}{{\left| {{u_j}} \right|}^{{p_{ij}}}}{{\left| {{u_i}} \right|}^{{q_{ij}} - {2_{{u_i}}}}},x \in {\mathbb{R}^N},} } \\{{u_i} \in {D^{1,2}}\left( {{\mathbb{R}^N}} \right),i = 1,2, \ldots ,M,}\end{array}} \right.$$
where \(p_{ij} + q_{ij} = 2*: = \frac{{2N}}{{N - 2}}(N \geqslant 3)\). We prove the existence of ground-states to the M-coupled system. At the same time, we not only give out the characterization of the ground-states, but also study the number of the ground-states, containing the positive ground-states and the semi-trivial ground-states, which may be the first result studying the number of not only positive ground-states but also semi-trivial ground-states.
  相似文献   

18.
In Advances in Mathematical Physics (2011) we showed that the weighted shift \(z^{p}\frac{d^{p+1}}{dz^{p+1}} (p=0, 1, 2,\ldots )\) acting on classical Bargmann space \(\mathbb {B}_{p}\) is chaotic operator. In Journal of Mathematical physics (2014), we constructed an chaotic weighted shift \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1} (p=0, 1, 2,\ldots )\) on some lattice Fock–Bargmann \(\mathbb {E}_{p}^{\alpha }\) generated by the orthonormal basis \( {e_{m}^{(\alpha ,p)}(z) = e_{m}^{\alpha } ; m=p, p+1,\ldots }\) where \( {e_{m}^{\alpha }(z) = (\frac{2\nu }{\pi })^{1/4}e^{\frac{\nu }{2}z^{2}}e^{-\frac{\pi ^{2}}{\nu }(m +\alpha )^{2} +2i\pi (m +\alpha )z}; m \in \mathbb {N}}\) with \(\nu , \alpha \) are real numbers; \(\nu > 0\), \(\mathbb {M}\) is an weighted shift and \(\mathbb {M^{*}}\) is the adjoint of the \(\mathbb {M}\). In this paper we study the chaoticity of tensor product \(\mathbb {M}^{*^{p}}\mathbb {M}^{p+1}\otimes z^{p}\frac{d^{p}}{dz^{p+1}} (p=0, 1, 2, \ldots )\) acting on \(\mathbb {E}_{p}^{\alpha }\otimes \mathbb {B}_{p}\).  相似文献   

19.
In this paper, we investigate the positive solutions to the following integral system with a polyharmonic extension operator on R~+_n:{u(x)=c_n,a∫_?R_+~n(x_n~(1-a_v)(y)/|x-y|~(n-a))dy,x∈R_+~n,v(y)=c_n,a∫_R_+~n(x_n~(1-a_uθ)(x)/|x-y|~(n-a))dx,y∈ ?R_+~n,where n 2, 2-n a 1, κ, θ 0. This integral system arises from the Euler-Lagrange equation corresponding to an integral inequality on the upper half space established by Chen(2014). The explicit formulations of positive solutions are obtained by the method of moving spheres for the critical case κ =n-2+a/n-a,θ =n+2-a/ n-2+a. Moreover,we also give the nonexistence of positive solutions in the subcritical case for the above system.  相似文献   

20.
Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号