首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Implicit solvent hydration free energy models are an important component of most modern computational methods aimed at protein structure prediction, binding affinity prediction, and modeling of conformational equilibria. The nonpolar component of the hydration free energy, consisting of a repulsive cavity term and an attractive van der Waals solute-solvent interaction term, is often modeled using estimators based on the solvent exposed solute surface area. In this paper, we analyze the accuracy of linear surface area models for predicting the van der Waals solute-solvent interaction energies of native and non-native protein conformations, peptides and small molecules, and the desolvation penalty of protein-protein and protein-ligand binding complexes. The target values are obtained from explicit solvent simulations and from a continuum solvent van der Waals interaction energy model. The results indicate that the standard surface area model, while useful on a coarse-grained scale, may not be accurate or transferable enough for high resolution modeling studies of protein folding and binding. The continuum model constructed in the course of this study provides one path for the development of a computationally efficient implicit solvent nonpolar hydration free energy estimator suitable for high-resolution structural and thermodynamic modeling of biological macromolecules.  相似文献   

2.
3.
Protein-carbohydrate interactions are increasingly being recognized as essential for many important biomolecular recognition processes. From these, numerous biomedical applications arise in areas as diverse as drug design, immunology, or drug transport. We introduce SLICK, a package containing a scoring and an energy function, which were specifically designed to predict binding modes and free energies of sugars and sugarlike compounds to proteins. SLICK accounts for van der Waals interactions, solvation effects, electrostatics, hydrogen bonds, and CH...pi interactions, the latter being a particular feature of most protein-carbohydrate interactions. Parameters for the empirical energy function were calibrated on a set of high-resolution crystal structures of protein-sugar complexes with known experimental binding free energies. We show that SLICK predicts the binding free energies of predicted complexes (through molecular docking) with high accuracy. SLICK is available as part of our molecular modeling package BALL (www.ball-project.org).  相似文献   

4.
Despite a plethora of suggested technological and biomedical applications, the nanotoxicity of two-dimensional (2D) graphitic carbon nitride (g-C3N4) towards biomolecules remains elusive. To address this issue, we employ all-atom classical molecular dynamics simulations and investigate the interactions between nucleic acids and g-C3N4. It is revealed that, toxicity is modulated through a subtle balance between electrostatic and van der Waals interactions. When the exposed nucleobases interact through predominantly short-ranged van der Waals and π–π stacking interactions, they get deviated from their native disposition and adsorb on the surface, leading to loss of self-stacking and intra-quartet H-bonding along with partial disruption of the native structure. In contrast, for the interaction with double-stranded structures of both DNA and RNA, long-range electrostatics govern the adsorption phenomena since the constituent nucleobases are relatively concealed and wrapped, thereby resulting in almost complete preservation of the nucleic acid structures. Construction of free energy landscapes for lateral translation of adsorbed nucleic acids suggests decent targeting specificity owing to their restricted movement on g-C3N4. The release times of nucleic acids adsorbed through predominant electrostatics are significantly less than those adsorbed through stacking with the surface. It is therefore proposed that g-C3N4 would induce toxicity towards any biomolecule having bare residues available for strong van der Waals and π–π stacking interactions relative to those predominantly interacting through electrostatics.  相似文献   

5.
新型Schiff碱分子钳对中性分子的识别性能研究   总被引:4,自引:0,他引:4  
采用差紫外光谱法考察了3种新型Schiff碱分子钳对一系列二苯甲酮、芳香二胺的识别性能.测定了主客体间的结合常数(Ka)和自由能变化(ΔG0).结果表明,分子钳对所考察的客体显示良好的识别作用,主客体间形成1:1型超分子配合物.讨论了识别作用的推动力与形状、大小匹配和几何互补等因素对形成主客体配合物的影响,并利用核磁氢谱与计算机模拟作为辅助手段对主要的实验结果与现象进行了解释.  相似文献   

6.
Molecular recognition between molecules is one of the most fundamental processes in biology and chemistry. The recognition process is largely driven by non-covalent forces such as hydrogen bonding, electrostatics, van der Waals forces, pi-pi interactions, and conformational energy. The complementarity between the receptor and substrate is very similar to the "lock and key" function, first described by Emil Fischer over 100 years ago, - the lock being the molecular receptor such as a protein or enzyme and the key being the substrate such as a drug, that is recognized to give a defined receptor-substrate complex. This review focuses on the design of specific ligand systems as "Keys" to enable the induced fit of these keys into the target macromolecules, protein/enzyme (Locks) with particular emphasis on protein recognition.  相似文献   

7.
The interaction of three cyclodextrins (CDs), viz. beta-CD, heptakis (2,6-di-O-methyl)-beta-CD (DM-beta-CD), and 2-hydroxypropyl-beta-CD (HP-beta-CD), with cholesterol was investigated using molecular dynamics (MD) simulations. The free energy along the reaction pathway delineating the inclusion of cholesterol into each CD was computed using the adaptive biasing force method. The association constant and the corresponding association free energy were derived by integrating the potential of mean force (PMF) over a representative ordering parameter. The results show that the free energy profiles possess two local minima corresponding to roughly equally probable binding modes. Among the three CDs, DM-beta-CD exhibits the highest propensity to associate with cholesterol. Ranking for binding cholesterol, viz. DM-beta-CD > HP-beta-CD > beta-CD, agrees nicely with experiment. Partitioning of the PMF into free energy components illuminates that entering of cholesterol into the CD cavity is driven mainly by electrostatic interactions, whereas deeper inclusion results from van der Waals forces and solvation effects. Additional MD simulations were performed to investigate the structural stability of the host-guest complexes near the free energy minima. The present results demonstrate that association of cholesterol and CDs follows two possible binding modes. Although the latter are thermodynamically favorable for all CDs, one of the two inclusion complexes appears to be preferred kinetically in the case of DM-beta-CD.  相似文献   

8.
Cyclin-dependent kinase 2 (CDK2) is a key macromolecule in cell cycle regulation. In cancer cells, CDK2 is often overexpressed and its inhibition is an effective therapy of many cancers including breast carcinomas, leukemia, and lymphomas. Quantitative characterization of the interactions between CDK2 and its inhibitors at atomic level may provide a deep understanding of protein-inhibitor interactions and clues for more effective drug discovery. In this study, we have used the computational alanine scanning approach in combination with an efficient interaction entropy method to study the microscopic mechanism of binding between CDK2 and its 13 inhibitors. The total binding free energy from the method shows a correlation of 0.76?0.83 with the experimental values. The free energy component reveals two binding mode in the 13 complexes, namely van der Waals dominant, and electrostatic dominant. Decomposition of the total energy to per-residue contribution allows us to identify five hydrophobic residues as hot spots during the binding. Residues that are responsible for determining the strength of the binding were also analyzed.  相似文献   

9.
Protein-DNA recognition plays an essential role in the regulation of gene expression. Understanding the recognition mechanism of protein-DNA complexes is a challenging task in molecular and computational biology. In this work, a scoring function based approach has been developed for identifying the binding sites and delineating the important residues for binding in protein-DNA complexes. This approach considers both the repulsive interactions and the effect of distance between atoms in protein and DNA. The results showed that positively charged, polar, and aromatic residues are important for binding. These residues influence the formation of electrostatic, hydrogen bonding, and stacking interactions. Our observation has been verified with experimental binding specificity of protein-DNA complexes and found to be in good agreement with experiments. The comparison of protein-RNA and protein-DNA complexes reveals that the contribution of phosphate atoms in DNA is twice as large as in protein-RNA complexes. Furthermore, we observed that the positively charged, polar, and aromatic residues serve as hotspot residues in protein-RNA complexes, whereas other residues also altered the binding specificity in protein-DNA complexes. Based on the results obtained in the present study and related reports, a plausible mechanism has been proposed for the recognition of protein-DNA complexes.  相似文献   

10.
Thermodynamic parameters were determined for complex formation between the Grb2 SH2 domain and Ac-pTyr-Xaa-Asn derived tripeptides in which the Xaa residue is an α,α-cycloaliphatic amino acid that varies in ring size from three- to seven-membered. Although the six- and seven-membered ring analogs are approximately equipotent, binding affinities of those having three- to six-membered rings increase incrementally with ring size because increasingly more favorable binding enthalpies dominate increasingly less favorable binding entropies, a finding consistent with an enthalpy-driven hydrophobic effect. Crystallographic analysis reveals that the only significant differences in structures of the complexes are in the number of van der Waals contacts between the domain and the methylene groups in the Xaa residues. There is a positive correlation between buried nonpolar surface area and binding free energy and enthalpy, but not with ΔC(p). Displacing a water molecule from a protein-ligand interface is not necessarily reflected in a favorable change in binding entropy. These findings highlight some of the fallibilities associated with commonly held views of relationships of structure and energetics in protein-ligand interactions and have significant implications for ligand design.  相似文献   

11.
The Src-homology-3 (SH3) domain of the Caenorhabditis elegans protein Sem-5 binds proline-rich sequences. It is reported that the SH3 domains broadly accept amide N-substituted residues instead of only recognizing prolines on the basis of side chain shape or rigidity. We have studied the interactions between Sem-5 and its ligands using molecular dynamics (MD), free energy calculations, and sequence analysis. Relative binding free energies, estimated by a method called MM/PBSA, between different substitutions at sites -1, 0, and +2 of the peptide are consistent with the experimental data. A new method to calculate atomic partial charges, AM1-BCC method, is also used in the binding free energy calculations for different N-substitutions at site -1. The results are very similar to those obtained from widely used RESP charges in the AMBER force field. AM1-BCC charges can be calculated more rapidly for any organic molecule than can the RESP charges. Therefore, their use can enable a broader and more efficient application of the MM/PBSA method in drug design. Examination of each component of the free energy leads to the construction of van der Waals interaction energy profiles for each ligand as well as for wild-type and mutant Sem-5 proteins. The profiles and free energy calculations indicate that the van der Waals interactions between the ligands and the receptor determine whether an N- or a Calpha-substituted residue is favored at each site. A VC value (defined as a product of the conservation percentage of each residue and its van der Waals interaction energy with the ligand) is used to identify several residues on the receptor that are critical for specificity and binding affinity. This VC value may have a potential use in identifying crucial residues for any ligand-protein or protein-protein system. Mutations at two of those crucial residues, N190 and N206, are examined. One mutation, N190I, is predicted to reduce the selectivity of the N-substituted residue at site -1 of the ligand and is shown to bind similarly with N- and Calpha-substituted residues at that site.  相似文献   

12.
通过分子动力学模拟检测了2种程序性细胞死亡蛋白(PD-1)/单克隆抗体(Pembrolizumab和Nivolumab)复合物, 并使用高效的计算丙氨酸扫描方法预测了单抗与PD-1的结合热点, 将它们与对PD-1/PD-L1结合重要的热点残基进行对比分析. 结果显示, Pembrolizumab以类似于PD-L1的方式与PD-1结合, 而Nivolumab则以不同的方式与PD-1结合. 2个PD-1/mAb复合物中共有的热点只有PD-1K131. 同时发现, 与PD-1K131结合的单抗的关键残基通常都受范德华(vdW)能量控制. 2种单克隆抗体上热点的自由能贡献都以vdW能量为主, 这表明在下一代PD-1新抗体的设计中需要提高静电型热点残基的数量.  相似文献   

13.
The protein MDM2 forms a complex with the tumor suppressing protein p53 and targets it for proteolysis in order to down-regulate p53 in normal cells. Inhibition of this interaction is of therapeutic importance. Molecular dynamics simulations of the association between p53 and MDM2 have revealed mutual modulation of the two surfaces. Analysis of the simulations of the two species approaching each other in solution shows how long range electrostatics steers these two proteins together. The net electrostatics is controlled largely by a few cationic residues that surround the MDM2 binding site. There is an overall separation in electrostatics of MDM2 and p53 that are mutually complementary and drive association. Upon close approach, there is significant energetic strain as the charges are occluded from water (desolvated). However, the complexation is driven by packing interactions that lead to highly favorable van der Waals interactions. Although the complementarity of the electrostatics of the two surfaces is essential for the two partners to form a complex, steric collisions of Y100 and short ranged van der Waals interactions of F19, W23, L26 of p53 determine the final steps of native complex formation. The electrostatics seem to be evolutionarily conserved, including variations in both partners.  相似文献   

14.
The energetics of weak interactions (van der Waals forces, hydrogen bonding) are difficult to quantify in biological ligand-receptor pairs. Insight into the biochemical role these forces play is critical to an understanding of signal transduction events and the drug discovery process. Ruthenium pentaammine and iron tetracyano complexes modified with either biotin or desthiobiotin have been synthesized and characterized. These modified biological ligands bind to the protein avidin in a manner similar to that of native biotin. Experiments using redox mediators show that the avidin-bound complexes are electrochemically accessible.  相似文献   

15.
16.
Non‐directional van der Waals forces in biological and synthetic supramolecular systems play important roles in molecular assembly, particularly in determining the distances of the interacting species. The van der Waals forces are normally used in combination with other directional forces and are considered to play a secondary role in achieving specificity and fidelity in molecular recognition. Using an ideal supramolecular system consisting solely of hydrogen and carbon atoms, we found that the van der Waals interactions enable the high‐fidelity sorting of two homomeric receptors during ligand‐induced assembly. The self‐sorting occurred in a narcissistic manner by repulsion of a competing diastereoisomeric receptor from the assembly. The structure–sorting relationship study with enantiomers further revealed the dominant role of the van der Waals forces in shape recognition for high‐fidelity self‐sorting.  相似文献   

17.
Fluorocarbons often have distinct miscibility properties compared to their nonfluorinated analogues. These differences may be attributed to van der Waals dispersion forces or solvophobic effects, but their contributions are notoriously difficult to separate in molecular recognition processes. Here, molecular torsion balances were used to compare cohesive alkyl and perfluoroalkyl interactions in a range of solvents. A simple linear regression enabled the energetic partitioning of solvophobic and van der Waals forces in the self‐association of apolar chains. The contributions of dispersion interactions in apolar cohesion were found to be strongly attenuated in solution compared to the gas phase, but still play a major role in fluorous and organic solvents. In contrast, solvophobic effects were found to be dominant in driving the association of apolar chains in aqueous solution. The results are expected to assist the computational modelling of van der Waals forces in solution.  相似文献   

18.
We have studied the interaction between cefuroxime sodium (CXS) and papain at different temperatures by a fluorescence method, and confirmed that the mechanism of fluorescence quenching of CXS to papain is mainly static quenching. We also determined the binding constant K. Based on the thermodynamic functions at different temperatures, the results show that the major forces between CXS and papain are van der Waals’ forces and H bond. According to the Forster non-radiation energy transfer mechanism, we determined the binding distance between CXS and papain, and studied the confirmation effect of CXS to papain by synchronous fluorescence and UV–Vis spectroscopy. Molecular simulations show that the binding types of CXS and papain are van der Waals’ forces, hydrophobic interaction, and H-bond.  相似文献   

19.
Carotenoids are essential constituents of plant light-harvesting complexes (LHCs), being involved in protein stability, light harvesting, and photoprotection. Unlike chlorophylls, whose binding to LHCs is known to require coordination of the central magnesium, carotenoid binding relies on weaker intermolecular interactions (such as hydrogen bonds and van der Waals forces), whose character is far more elusive. Here we addressed the key interactions responsible for carotenoid binding to LHCs by combining molecular dynamics simulations and polarizable quantum mechanics/molecular mechanics calculations on the major LHC, LHCII. We found that carotenoid binding is mainly stabilized by van der Waals interactions with the surrounding chlorophyll macrocycles rather than by hydrogen bonds to the protein, the latter being more labile than predicted from structural data. Furthermore, the interaction network in the binding pockets is relatively insensitive to the chemical structure of the embedded carotenoid. Our results are consistent with a number of experimental data and challenge the role played by specific interactions in the assembly of pigment-protein complexes.

Carotenoids are essential constituents of plant light-harvesting complexes. This in silico study shows that carotenoid binding is mainly driven by van der Waals interactions with the surrounding chlorophylls rather than hydrogen bonds to the protein.  相似文献   

20.
The independent trajectory thermodynamic integration (IT-TI) approach (Lawrenz et. al J. Chem. Theory. Comput. 2009, 5:1106-1116(1)) for free energy calculations with distributed computing is employed to study two distinct cases of protein-ligand binding: first, the influenza surface protein N1 neuraminidase bound to the inhibitor oseltamivir, and second, the M. tuberculosis enzyme RmlC complexed with the molecule CID 77074. For both systems, finite molecular dynamics (MD) sampling and varied molecular flexibility give rise to IT-TI free energy distributions that are remarkably centered on the target experimental values, with a spread directly related to protein, ligand, and solvent dynamics. Using over 2 μs of total MD simulation, alternative protocols for the practical, general implementation of IT-TI are investigated, including the optimal use of distributed computing, the total number of alchemical intermediates, and the procedure to perturb electrostatics and van der Waals interactions. A protocol that maximizes predictive power and computational efficiency is proposed. IT-TI outperforms traditional TI predictions and allows a straightforward evaluation of the reliability of free energy estimates. Our study has broad implications for the use of distributed computing in free energy calculations of macromolecular systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号