首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to study the use of a local approach to predict crack‐initiation life on notches in mechanical components under multiaxial fatigue conditions, the study of the local cyclic elasto‐plastic behaviour and the selection of an appropriate multiaxial fatigue model are essential steps in fatigue‐life prediction. The evolution of stress–strain fields from the initial state to the stabilized state depends on the material type, loading amplitude and loading paths. A series of biaxial tension–compression tests with static or cyclic torsion were carried out on a biaxial servo‐hydraulic testing machine. Specimens were made of an alloy steel 42CrMo4 quenched and tempered. The shear stress relaxations of the cyclic tension–compression with a steady torsion angle were observed for various loading levels. Finite element analyses were used to simulate the cyclic behaviour and good agreement was found. Based on the local stabilized cyclic elastic–plastic stress–strain responses, the strain‐based multiaxial fatigue damage parameters were applied and correlated with the experimentally obtained lives. As a comparison, a stress‐invariant‐based approach with the minimum circumscribed ellipse (MCE) approach for evaluating the effective shear stress amplitude was also applied for fatigue life prediction. The comparison showed that both the equivalent strain range and the stress‐invariant parameter with non‐proportional factors correlated well with the experimental results obtained in this study.  相似文献   

2.
In this paper, the shortcomings of the Smith–Watson–Topper (SWT) damage parameter are analysed on the basis of the critical plane concept. It is found that the SWT model usually overestimates the fatigue lives of materials since it only takes into account the fatigue damage caused by the tensile components. To solve this problem, Chen et al. (CXH) modified the SWT model through considering the shear components. However, there are at least two problems present in CXH model: (1) the mean stress is not considered and (2) the different influence of the normal and shear components on fatigue life is not included. Besides, experimental validations show that the modification by Chen et al. usually leads to conservative fatigue life predictions during non‐proportional loading. In order to overcome the shortcomings of SWT and CXH models, a damage parameter as the effective strain energy density (ESED) is proposed. Experimental validations by using eight kinds of materials show that the ESED model can give satisfactory fatigue life predictions under the non‐proportional loading.  相似文献   

3.
Two natural rubber (NR) compounds of hardness shore A 60 and 70 with 10 different biaxial displacement/twist paths were investigated using an axisymmetric cylindrical hollow dumbbell specimen. The effects of the proportional and non‐proportional loading modes on the fatigue life are discussed. In total, 52 fatigue test results are reported with fatigue life results of 3,918 to 488,000 cycles. The effect of the channel phase on the fatigue life is discussed.  相似文献   

4.
Fatigue tests under variable amplitude multiaxial loading were conducted on titanium alloy TC4 tubular specimens. A method to estimate the fatigue life under variable amplitude multiaxial loading has been proposed. Multiaxial fatigue parameter based on Wu–Hu–Song approach and rainflow cycle counting and Miner–Palmgren rule were applied in this method. The capability of fatigue life prediction for the proposed method was checked against the test data of TC4 alloy under variable amplitude multiaxial loading. The prediction results are all within a factor of two scatter band of the test results.  相似文献   

5.
A new critical plane‐energy model is proposed in this paper for multiaxial fatigue life prediction of metals. A brief review of existing methods, especially on the critical plane‐based and energy‐based methods, is given first. Special focus is on the Liu–Mahadevan critical plane approach, which has been shown to work for both brittle and ductile metals. One potential drawback of the Liu–Mahadevan model is that it needs an empirical calibration parameter for non‐proportional multiaxial loadings because only the strain terms are used and the out‐of‐phase hardening cannot be explicitly considered. An energy‐based model using the Liu–Mahadevan concept is proposed with the help of the Mróz–Garud plasticity model. Thus, the empirical calibration for non‐proportional loading is not needed because the out‐of‐phase hardening is naturally included in the stress calculation. The model predictions are compared with experimental data from open literature, and the proposed model is shown to work for both proportional and non‐proportional multiaxial loadings without the empirical calibration.  相似文献   

6.
It is generally accepted that the additional hardening of materials could largely shorten multi‐axis fatigue life of engineering components. To consider the effects of additional hardening under multi‐axial loading, this paper summarizes a new multi‐axial low‐cycle fatigue life prediction model based on the critical plane approach. In the new model, while critical plane is adopted to calculate principal equivalent strain, a new plane, subcritical plane, is also defined to calculate a correction parameter due to the effects of additional hardening. The proposed fatigue damage parameter of the new model combines the material properties and the angle of the loading orientation with respect to the principal axis and can be established with Coffin‐Manson equation directly. According to experimental verification and comparison with other traditional models, it is clear that the new model has satisfactory reliability and accuracy in multi‐axial fatigue life prediction.  相似文献   

7.
For engineering components subjected to multiaxial loading, fatigue life prediction is crucial for guaranteeing their structural security and economic feasibility. In this respect, energy‐based models, integrating the stress and strain components, are widely used because of their availability in fatigue prediction. Through employing the plastic strain energy concept and critical plane approach, a new energy‐based model is proposed in this paper to evaluate the low‐cycle fatigue life, in which the critical plane is defined as the maximum damage plane. In the proposed model, a newly defined NP factor κ*  is used to quantify the nonproportional (NP) effect so that the damage parameter can be conveniently calculated. Moreover, a simple estimation method of weight coefficient is developed, which can reflect different contributions of shear and normal plastic strain energy on total fatigue damage. Experimental data of 10 kinds of materials are employed to assess the effectiveness of this model as well as three other energy‐based models.  相似文献   

8.
This paper proposed a simple life prediction model for assessing fatigue lives of metallic materials subjected to multiaxial low‐cycle fatigue (LCF) loading. This proposed model consists of the maximum shear strain range, the normal strain range and the maximum normal stress on the maximum shear strain range plane. Additional cyclic hardening developed during non‐proportional loading is included in the normal stress and strain terms. A computer‐based procedure for multiaxial fatigue life prediction incorporating critical plane damage parameters is presented as well. The accuracy and reliability of the proposed model are systematically checked by using about 300 test data through testing nine kinds of material under both zero and non‐zero mean stress multiaxial loading paths.  相似文献   

9.
A new calculation approach is suggested to the fatigue life evaluation of notched specimens under multiaxial variable amplitude loading. Within this suggested approach, if the computed uniaxial fatigue damage by the pure torsional loading path is larger than that by the axial tension–compression loading path, a shear strain‐based multiaxial fatigue damage parameter is assigned to calculate multiaxial fatigue damage; otherwise, an axial strain‐based multiaxial fatigue damage parameter is assigned to calculate multiaxial fatigue damage. Furthermore, the presented method employs shear strain‐based and axial strain‐based multiaxial fatigue damage parameters in substitution of equivalent strain amplitude to consider the influence of nonproportional additional hardening. The experimental data of GH4169 superalloy and 7050‐T7451 aluminium alloy notched components are used to illustrate the presented multiaxial fatigue lifetime estimation approach for notched components, and the results reveal that estimations are accurate.  相似文献   

10.
Several groups of fatigue damage parameters are discussed and then an improved multiaxial high‐cycle fatigue criterion based on critical plane defined by the plane of maximum shear stress range is presented in this paper. A compromising solution to consider the mean normal stress acting on the critical plane is also proposed. The new fatigue criterion extends the range of metallic materials which is valid for the ratio 1.25 < f?1/t?1 < 2. The predictions based on the presented model show a good agreement with test data.  相似文献   

11.
Fatigue crack path prediction and crack arrest are very important for structural safety. In real engineering structures, there are many factors influencing the fatigue crack paths, such as the material type (microstructure), structural geometry and loading path, etc. In this paper, both experimental and numerical methods are applied to study the effects of loading path on crack orientations. Experiments were conducted on a biaxial testing machine, using specimens made of two steels: 42CrMo4 and CK45 (equivalent to AISI 1045), with six different biaxial loading paths. Fractographical analyses of the plane of the stage I crack propagation were carried out and the crack orientations were measured using optical microscopy. The multiaxial fatigue models, such as the critical plane models and also the energy‐based critical plane models, were applied for predicting the orientation of the critical plane. Comparisons of the predicted orientation of the damage plane with the experimental observations show that the shear‐based multiaxial fatigue models provide good predictions for stage I crack growth for the ductile materials studied in this paper.  相似文献   

12.
A new computational methodology is proposed for fatigue life prediction of notched components subjected to variable amplitude multiaxial loading. In the proposed methodology, an estimation method of non‐proportionality factor (F) proposed by authors in the case of constant amplitude multiaxial loading is extended and applied to variable amplitude multiaxial loading by using Wang‐Brown's reversal counting approach. The pseudo stress correction method integrated with linear elastic finite element analysis is utilized to calculate the local elastic‐plastic stress and strain responses at the notch root. For whole local strain history, the plane with weight‐averaged maximum shear strain range is defined as the critical plane in this study. Based on the defined critical plane, a multiaxial fatigue damage model combined with Miner's linear cumulative damage law is used to predict fatigue life. The experimentally obtained fatigue data for 7050‐T7451 aluminium alloy notched shaft specimens under constant and variable amplitude multiaxial loadings are used to verify the proposed methodology and equivalent strain‐based methodology. The results show that the proposed methodology is superior to equivalent strain‐based methodology.  相似文献   

13.
From the literature concerning the traditional nonproportional (NP) multiaxial cyclic fatigue prediction, special attentions are usually paid to multiaxial constitutive relations to quantify fatigue damage accumulation. As a result, estimation of NP hardening effect decided by the entire history path is always proposed, which is a challenging and complex task. To simplify the procedure of multiaxial fatigue life prediction of engineering components, in this paper, a novel effective energy parameter based on simple material properties is proposed. The parameter combines uniaxial cyclic plastic work and NP hardening effects. The fatigue life has been assessed based on traditional multiaxial fatigue criterion and the proposed parameter, which has been validated by experimental results of 316 L stainless steel under different low‐cycle loading paths.  相似文献   

14.
A path‐dependent cycle counting method is proposed by applying the distance formula between two points on the tension‐shear equivalent strain plane for the identified half‐cycles first. The Shang–Wang multiaxial fatigue damage model for an identified half‐cycle and Miner's linear accumulation damage rule are used to calculate cumulative fatigue damage. Therefore, a multiaxial fatigue life prediction procedure is presented to predict conveniently fatigue life under a given tension and torsion random loading time history. The proposed method is evaluated by experimental data from tests on cylindrical thin‐walled tubes specimens of En15R steel subjected to combined tension/torsion random loading, and the prediction results of the proposed method are compared with those of the Wang–Brown method. The results showed that both methods provided satisfactory prediction.  相似文献   

15.
Based on the critical plane approach, a new path‐dependent multiaxial fatigue model in low‐cycle fatigue is proposed. The proposed model includes damage contribution from four sources: the normal strain amplitude, the shear strain amplitude on the critical plane, the hydrostatic mean strain and a new path‐dependent factor. The effect of mean strain is considered by the hydrostatic mean strain. The experimental data of 11 kinds of materials are used to demonstrate the effectiveness of this new model under both zero and non‐zero mean strain multiaxial loading path.  相似文献   

16.
High‐cycle fatigue life prediction methods based on different critical planes, including the maximum shear stress (MSS) plane, the weighted average shear stress plane and the Maximum Variance shear stress plane, are compared by two multiaxial cycle counting methods, i.e. the main and auxiliary channels (MAC) counting and the relative equivalent stress counting. A modified damage model is used to calculate the multiaxial fatigue damage. Compared with the experimental lives for 7075‐T651 aluminium alloy, the predicted results show that the MSS method together with MAC counting is suitable for the multiaxial fatigue life prediction.  相似文献   

17.
The present studies are aimed at validation of a newly developed critical plane model with respect to large variety of engineering materials used for different applications. This newly developed model has been recently reported by present authors. To strengthen general applicability of this model, multiaxial test database consisting of a wide variety of multiaxial loading paths have been considered. The strain paths include pure axial, pure torsion, in‐phase axial‐torsion, out‐of‐phase axial‐torsion with phase shift angles varying from 30° to 180° having sine/trapezoidal/triangular strain waveforms, with/without mean axial/shear strains and asynchronous axial‐torsion strain paths of different frequency ratios etc. The materials covered in present study are mainly categorized as ferrous and nonferrous alloys. In ferrous alloy category, material grades from plain carbon steel (mild steel, 16MnR, SA333 Gr. 6, E235 and E355), low‐alloy steel (1Cr‐Mo‐V and S460 N) and austenitic stainless steel (SS304, SS316L and SS347) have been considered. In nonferrous alloy category, aluminium alloys (2024T3‐Al, 7075T651‐Al, and PA38‐T6‐Al), titanium (pure titanium and TC4 alloy), cobalt base super‐alloy (Haynes 188), and nickel alloy (Inconel‐718) have been considered. The predicted and test fatigue lives are found in good agreement for all these materials and complex multiaxial loading paths.  相似文献   

18.
A series of multiaxial low-cycle fatigue experiments was performed on 45 steel under non-proportional loading. The present evaluations of multiaxial low-cycle fatigue life were systematically analysed. A combined energy density and critical plane concept is proposed that considers different failure mechanisms for a shear-type failure and a tensile-type failure, and from which different damage parameters for the critical plane-strain energy density are proposed. For tensile-type failures in material 45 steel and shear-type failures in material 42CrMo steel, the new damage parameters permit a good prediction for multiaxial low-cycle fatigue failure under non-proportional loading. The currently used critical plane models are a special and simple form of the new model.  相似文献   

19.
This paper discusses low‐cycle fatigue characteristics of 316L stainless steel under proportional and nonproportional loadings. Tension–torsion multiaxial low‐cycle fatigue tests were performed using five strain paths. Additional hardening was observed under nonproportional loadings and was more significant in tests with larger nonproportionality. Mises equivalent strain, Smith–Watson–Topper, Fatemi–Socie, Kandil–Brown–Miller and nonproportional strain parameters were applied to the experimental data to evaluate the multiaxial low‐cycle fatigue damage. The applicability of the damage laws to practical design was discussed.  相似文献   

20.
To investigate the multiaxial fatigue properties of vulcanized natural rubber (NR), a series of tests including both proportional and non-proportional loading paths on small specimens were performed. The existing fatigue life prediction approaches are evaluated with life data obtained in the tests. It is shown that the equivalent strain approach presents a good prediction of the fatigue life although it has a certain shortcoming. Compared with the strain energy density (SED) model, the cracking energy density (CED) model represents the portion of SED that is available to be released by virtue of crack growth on a given material plane, so it gives better results in the life prediction. Some of the approaches based on critical plane which are widely used for metal fatigue are also tested in this paper, and the results show that the Chen-Xu-Huang (CXH) model gives a better prediction, compared with the Smith-Watson-Topper (SWT) and Wang–Brown (WB) model. A modified Fatemi–Socie's model has also been introduced, and the results show that the modified model can be used to predict the fatigue life of rubber material well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号