首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatially distributed near-surface air temperature data are a very important input parameter for several land-surface models. Such data are often lacking because there are few traditional meteorological stations. It is of great significance in both theoretical research and practical applications to retrieve air temperature data from remote-sensing observations. Based on the radiative transfer theory, this article addresses the estimate of near-surface air temperature from data from the first Chinese operational geostationary meteorological satellite, FengYun-2C (FY-2C), in two thermal infrared channels (IR1, 10.3–11.3 μm and IR2, 11.5–12.5 μm) and the MODIS atmospheric profile (MOD07) product, which provide profiles of water vapour and air temperature in different atmospheric layers. The algorithm involves only two essential parameters (transmittance and emissivity). Sensitivity analysis of the algorithm has been performed for evaluation of probable near-surface air temperature estimation error due to the possible errors in transmittance and emissivity. Results from the analysis indicate that the proposed algorithm is able to provide an accurate estimation of near-surface air temperature from FY-2C data. Results from the sensitivity analysis indicate that the average air temperature estimation error is less than 1.2 K for a possible transmittance error of 0.05 in both channels under an emissivity range 0.95–0.98. Assuming an error of 0.005 in ground emissivity for the two thermal channels, the average near-surface air temperature error is 0.6 K. Measured air temperature datasets have been used to validate the algorithm. All the validated data indicate that the estimate error is less than 3 K in more than 80% of the samples. The high accuracy for this dataset confirms the applicability of the proposed algorithm as an alternative method for accurate near-surface air temperature retrieval from FY-2C data.  相似文献   

2.
This paper presents a practical split‐window algorithm utilized to retrieve land‐surface temperature (LST) from Moderate‐resolution Imaging Spectroradiometer (MODIS) data, which involves two essential parameters (transmittance and emissivity), and a new method to simplify Planck function has been proposed. The method for linearization of Planck function, how to obtain atmosphere transmittance from MODIS near‐infrared (NIR) bands and the method for estimating of emissivity of ground are discussed with details. Sensitivity analysis of the algorithm has been performed for the evaluation of probable LST estimation error due to the possible errors in water content and emissivity. Analysis indicates that the algorithm is not sensitive to these two parameters. Especially, the average LST error is changed between 0.19–1.1°C when the water content error in the simulation standard atmosphere changes between ?80 and 130%. We confirm the conclusion by retrieving LST from MODIS image data through changing retrieval water content error. Two methods have been used to validate the proposed algorithm. Results from validation and comparison using the standard atmospheric simulation and the comparison with the MODIS LST product demonstrate the applicability of the algorithm. Validation with standard atmospheric simulation indicates that this algorithm can achieve the average accuracy of this algorithm is about 0.32°C in LST retrieval for the case without error in both transmittance and emissivity estimations. The accuracy of this algorithm is about 0.37°C and 0.49°C respectively when the transmittance is computed from the simulation water content by exponent fit and linear fit respectively.  相似文献   

3.
This paper presents an algorithm to retrieve land surface temperature (LST) and emissivity by integrating MODIS (Moderate Resolution Imaging Spectroradiometer) data onboard Terra and Aqua satellites. For a study area, there will be four pairs of day and night observations by MODIS onboard two satellites every day. Solar zenith angle, view zenith angle, and atmospheric water vapour have first been taken as independent variables to analyse their sensitivities to the same infrared channel measurements of MODIS on both Terra and Aqua satellites. Owing to their similar influences on the same MODIS band from Terra and Aqua satellites, four pairs of MODIS data from Terra and Aqua satellites can be thought of as MODIS measurement on a satellite at different viewing angles and viewing time. Comparisons between the retrieved results and in-situ measurements at three test sites (Qinghai Lake, Poyang Lake and Luancheng in China) indicate that the root mean square (rms) error is 0.66 K, except for the sand in Poyang Lake area. The rms error is less than 0.7 K when the retrieved results are compared with Earth Observing System (EOS) MODIS LST data products using the physics-based day/night algorithm. Emissivities retrieved by this algorithm are well compared to EOS MODIS emissivity data products (V5). The proposed algorithm can therefore be regarded as complementary and an extension to the EOS physics-based day/night algorithm.  相似文献   

4.
Current MODerate‐resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST, surface skin temperature)/emissivity products are evaluated and improvements are investigated. The ground‐based measurements of LST at Gaize (32.30° N, 84.06° E, 4420 m) on the western Tibetan Plateau from January 2001 to December 2002 agree well (mean and standard deviation of differences of 0.27 K and 0.84 K) with the 1‐km Version 004 (V4) Terra MODIS LST product (MOD11A1) generated by the split‐window algorithm. Spectral emissivities measured from surface soil samples collected at and around the Gaize site are in close agreement with the landcover‐based emissivities in bands 31 and 32 used by the split‐window algorithm. The LSTs in the V4 MODIS LST/emissivity products (MYD11B1 for Aqua and MOD11B1 for Terra) from the day/night LST algorithm are higher by 1–1.7 K (standard deviation around 0.6 K) in comparisons to the 5‐km grid aggregated values of the LSTs in the 1‐km products, which is consistent with the results of a comparison of emissivities. On average, the emissivity in MYD11B1 (MOD11B1) is 0.0107 (0.0167) less than the ground‐based measurements, which is equivalent to a 0.64 K (1.25 K) overestimation of LST around the average value of 285 K. Knowledge obtained from the evaluation of MODIS LST/emissivity retrievals provides useful information for the improvement of the MODIS LST day/night algorithm. Improved performance of the refined (V5) day/night algorithm was demonstrated with the Terra MODIS data in May–June 2004.  相似文献   

5.
This article aims to establish a new method to retrieve land surface temperature (LST) from hyperspectral thermal emission spectrometer (HYTES) data with split window (SW) algorithm. First, the optimal bands of HYTES sensor were selected with the genetic algorithm and then were used in the SW algorithm. In the SW algorithm, its coefficients were obtained based on several subranges of atmospheric column water vapours (CWVs) and view zenith angle (VZA) under various land surface conditions, in order to remove the atmospheric effect and improve the retrieval accuracy. Results showed that the root-mean-square error (RMSE) varies for different CWV and VZA, and with the increasing CWV and VZA, the RMSE value also increases. The emissivity, CWV, and VZA were also obtained for pixels. The sensitive analysis of LST retrieval to instrument noise and uncertainty of pixel emissivity and water vapour demonstrated the good performance of the proposed algorithm. Finally, the new algorithm was applied to HYTES sensor data, and the LST was validated using LST product of HYTES sensor obtained by NASA. The results showed that the RMSE of the LST retrieval with the proposed algorithm and the LST product of sensor for data 1 and data 2 is 1.3 K and 1.6 K, respectively.  相似文献   

6.
A strategy is presented with the aim of achieving an operational accuracy of 2.0 K in land-surface temperature (LST) from METEOSAT Second Generation (MSG)/Spinning Enhanced Visible and Infrared Imager (SEVIRI) data. The proposed method is based on a synergistic usage of the split-window (SW) and the two-temperature method (TTM) and consists in combining the use of a priori land-surface emissivity (LSE) estimates from emissivity maps with LST estimates obtained from SW method with the endeavour of defining narrower and more reliable ranges of admissible solutions before applying TTM. The method was tested for different surface types, according to SEVIRI spatial resolution, and atmospheric conditions occurring within the MSG disc. Performance of the method was best in the case of relatively dry atmospheres (water-vapour content less than 3 g cm?2), an important feature since in this case SW algorithms provide the worst results because of their sensitivity to uncertainties in surface emissivity. The hybrid method was also applied using real MSG/SEVIRI data and then validated with the Moderate resolution Imaging Spectroradiometer (MODIS)/Terra LST/LSE Monthly Global 0.05° geographic climate modeling grid (CMG) product (MOD11C3) generated by the day/night algorithm. The LST and LSE retrievals from the hybrid-method agree well (bias and root mean square error (RMSE) of??0.2 K and 1.4 K for LST, and around 0.003–0.02 and 0.009–0.02 for LSE) with the MOD11C3 product. These figures are also in conformity with the MOD11C3 performance at a semi-desert where LST (LSE) values is 1–1.7 K (0.017) higher (less) than the ground-based measurements.  相似文献   

7.
以黑河流域上游和中游为研究区,针对MTSAT-1R卫星数据,运用MODTRAN 4.0及晴空状态下的TIGR大气廓线数据,发展了根据地表比辐射率、大气水汽含量、传感器观测角度分组模拟的分裂窗算法,进行地表温度反演。分析了传感器噪声、地表比辐射率和大气水汽含量3个参数对该算法的影响,并结合模拟数据、地面观测数据及MODIS地表温度产品,对反演结果进行分析评价。结果表明:当传感器垂直观测或大气水汽含量小于2.5g/cm2时,反演精度在1K以内;反演结果与地面观测数据对比差异较小,在阿柔站RMSE为3.7 K(日)/1.4 K(夜),在盈科站RMSE为2.4K(日)/2.0K(夜);与MODIS地表温度产品比较,空间分布呈现出一致性。总之,分组分裂窗算法能较好地用于MTSAT-1R卫星数据进行地表温度反演。  相似文献   

8.
Optical satellite images are often contaminated with cirrus clouds. Thin cirrus can be detected with a channel at 1.38 μm, and an established cirrus removal method exists for visible/near-infrared (VNIR) channels in atmospheric window regions, which was demonstrated with Moderate Resolution Imaging Spectrometer (MODIS) data. This contribution addresses open issues of cirrus correction for Sentinel-2 type of instruments, that is, future spaceborne sensors such as Sentinel-2 or similar instruments. These issues are (i) an extension of the existing technique to account for cirrus during the water vapour retrieval (channel at 0.94 μm) and surface reflectance calculation to avoid reflectance artefacts at 0.94 μm, (ii) a discussion of options concerning cirrus removal in the short-wave infrared (SWIR, channels at 1.6 and 2.2 μm) region and (iii) an analysis of channel parallax (view angle) requirements to achieve a high-quality cirrus removal.  相似文献   

9.
This work estimated the land surface emissivities (LSEs) for MODIS thermal infrared channels 29 (8.4–8.7 μm), 31 (10.78–11.28 μm), and 32 (11.77–12.27 μm) using an improved normalized difference vegetation index (NDVI)-based threshold method. The channel LSEs are expressed as functions of atmospherically corrected reflectance from the MODIS visible and near-infrared channels with wavelengths ranging from 0.4 to 2.2 μm for bare soil. To retain the angular information, the vegetation LSEs were explicitly expressed in the NDVI function. The results exhibited a root mean square error (RMSE) among the estimated LSEs using the improved method, and those calculated using spectral data from Johns Hopkins University (JHU) are below 0.01 for channels 31 and 32. The MODIS land surface temperature/emissivity (LST/E) products, MOD11_L2 with LSE derived via the classification-based method with 1 km resolution and MOD11C1 with LSE retrieved via the day/night LST retrieval method at 0.05° resolution, were used to validate the proposed method. The resultant variances and entropies for the LSEs estimated using the proposed method were larger than those extracted from MOD11_L2, which indicates that the proposed method better described the spectral variation for different land covers. In addition, comparing the estimated LSEs to those from MOD11C1 yielded RMSEs of approximately 0.02 for the three channels; however, more than 70% of pixels exhibited LSE differences within 0.01 for channels 31 and 32, which indicates that the proposed method feasibly depicts LSE variation for different land covers.  相似文献   

10.
针对MODIS数据,分析比较了QIN和Wan-Dozier两种劈窗算法地表温度(LST)反演精度和误差分布。首先利用辐射传输模型MODTRAN4.0,结合TIGR大气廓线数据,评价两种算法绝对精度,然后基于误差传递理论分析评价二者的总精度,最后对两种算法的LST反演结果进行比较。研究表明针对所有廓线数据,两种算法绝对精度相差不大,但Wan-Dozier算法绝对精度受地表温度和水汽含量变化的影响程度要大于QIN算法;两种算法总精度相差不大,且主要误差源均为算法绝对精度和地表比辐射率精度,QIN算法反演结果对地表比辐射率的敏感性要略高于Wan-Dozier算法;两种算法得到研究区LST分布情况基本一致,均可表现空间LST分布差异,其中水体和裸土的LST反演结果差异较大,城镇和植被平均温度差异在0.5 K以内。  相似文献   

11.
The accuracy of a radiance transfer model neural network (RM-NN) for separating land surface temperature (LST) and emissivity from AST09 (the Advanced Spaceborne and Thermal Emission and Reflection Radiometer (ASTER) Standard Data Product, surface leaving radiance) is very high, but it is limited by the accuracy of the atmospheric correction. This article uses a neural network and radiance transfer model (MODTRAN4) to directly retrieve the LST and emissivity from ASTER1B data, which overcomes the difficulty of atmospheric correction in previous methods. The retrieval average accuracy of LST is about 1.1 K, and the average accuracy of emissivity in bands 11–14 is under 0.016 for simulated data when the input nodes are a combination of brightness temperature in bands 11–14. The average accuracy of LST is under 0.8 K when the input nodes are a combination of water vapour content and brightness temperature in bands 11–14. Finally, the comparison of retrieval results with ground measurement data indicates that the RM-NN can be used to accurately retrieve LST and emissivity from ASTER1B data.  相似文献   

12.
The accuracy of the Land Surface Temperature (LST) product generated operationally by the EUMETSAT Land Surface Analysis Satellite Applications Facility (LSA SAF) from the data registered by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the geostationary METEOSAT Second Generation 2 (MSG2, Meteosat 9) satellite was assessed on two test sites in Eastern Spain: a homogeneous, fully vegetated rice field and a high-plain, homogeneous area of shrubland. The LSA SAF LSTs were compared with ground LST measurements in the conventional temperature-based (T-based) method. We also validated the LSA SAF LST product by using an alternative radiance-based (R-based) method, with ground LSTs calculated from MSG-SEVIRI channel 9 brightness temperatures (at 10.8 μm) through radiative transfer simulations using atmospheric temperature and water vapor profiles together with surface emissivity data. Two lakes were also used for validation with the R-based method. Although the LSA SAF LST algorithm works mostly within the uncertainty expectation of ± 2 K, both validation methods showed significant biases for the LSA SAF LST product, up to 1.5 K in some cases. These biases, with the LSA SAF LST product overestimating reference values, were also observed in previous studies. Nevertheless, the present work points out that the biases are related to the land surface emissivities used in the operational generation of the product. The use of more appropriate emissivity values for the test sites in the LSA SAF LST algorithm led to better results by decreasing the biases by 0.7 K for the shrubland validation site. Furthermore, we proposed and checked an alternative algorithm: a quadratic split-window equation, based on a physical split-window model that has been widely proved for other sensors, with angular-dependent coefficients suitable for the MSG coverage area. The T-based validation results for this algorithm showed LST uncertainties (robust root-mean-squared-errors) from 0.2 K to 0.5 K lower than for the LSA SAF LST algorithm after the emissivity replacement. Nevertheless, the proposed algorithm accuracies were significantly better than those obtained for the current LSA SAF LST product, with an average accuracy difference of 0.6 K.  相似文献   

13.
As the 10 year Moderate Resolution Imaging Spectroradiometer Land Surface Temperature MODIS LST becomes available, it is significant to perform a comprehensive evaluation on the long-term product before downstream users use it for climate studies and atmospheric models. In this study, a validation is carried out using observations from the US Surface Radiation budget (SURFRAD) network. Strict quality control removes cloud-contaminated samples from MODIS LST collection and decreases noise information from SURFRAD measurements, thereby making the validation more persuasive. With analysis on 19,735 valid samples, Aqua/MODIS LST from a split-window algorithm shows retrieval errors from –14 K to 17 K with a bias of –0.93 K, an RMSE of 2.65 K, and a standard deviation of 2.48 K. The errors also show strong seasonal signals. With correlation tests between LST errors and several other factors, it is disclosed that LST retrieval errors mainly come from atmospheric effects and surface emissivity uncertainties, which are closely related to relative air humidity, absolute air humidity, sensor zenith angle, wind speed, normalized difference vegetation index (NDVI), and soil moisture. In addition, the impacts from these factors may not be independent. These impact factors suggest a deficiency of the split-window algorithm in dealing with atmospheric and surface complexity and variety.  相似文献   

14.
This paper aims to determine land surface temperature (LST) using data from a spinning enhanced visible and infrared imager (SEVIRI) on board Meteosat Second Generation 2 (MSG-2) by using the generalized split-window (GSW) algorithm. Coefficients in the GSW algorithm are pre-determined for several overlapping sub-ranges of the LST, land surface emissivity (LSE), and atmospheric water vapour content (WVC) using the data simulated with the atmospheric radiative transfer model MODTRAN 4.0 under various surface and atmospheric conditions for 11 view zenith angles (VZAs) ranging from 0° to 67°. The results show that the root mean square error (RMSE) varies with VZA and atmospheric WVC and that the RMSEs are within 1.0 K for the sub-ranges in which the VZA is less than 30° and the atmospheric WVC is less than 4.25 g cm?2. A sensitivity analysis of LSE uncertainty, atmospheric WVC uncertainty, and instrumental noise (NEΔT) is also performed, and the results demonstrate that LSE uncertainty can result in a larger LST error than other uncertainties and that the total error for the LST is approximately 1.21 and 1.45 K for dry atmosphere and 0.86 and 2.91 K for wet atmosphere at VZA = 0° and at VZA = 67°, respectively, if the uncertainty in the LSE is 1% and that in the WVC is 20%. The GSW algorithm is then applied to the MSG-2 – SEVIRI data with the LSE determined using the temperature-independent spectral indices method and the WVC either determined using the measurements in two split-window channels or interpolated temporally and spatially using European Centre for Medium Range Weather Forecasting (ECMWF) data. Finally, the SEVIRI LST derived in this paper (SEVIRI LST1) is evaluated through comparisons with the SEVIRI LST provided by the land surface analysis satellite applications facility (LSA SAF) (SEVIRI LST2) and the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MOD11B1 LST product). The results show that more than 80% of the differences between SEVIRI LST1 and SEVIRI LST2 are within 2 K, and approximately 70% of the differences between SEVIRI LST1 and MODIS LST are within 4 K. Furthermore, compared to MODIS LST, for four specific areas with different land surfaces, our GSW algorithm overestimates the LST by up to 1.0 K for vegetated surfaces and by 1.3 K for bare soil.  相似文献   

15.
Remote sensing of land surface temperature (LST) from the thermal band data of Landsat Thematic Mapper (TM) still remains unused in comparison with the extensive studies of its visible and near-infrared (NIR) bands for various applications. The brightness temperature can be computed from the digital number (DN) of TM6 data using the equation provided by the National Aeronautics and Space Administration (NASA). However, a proper algorithm for retrieving LST from the only one thermal band of the sensor still remains unavailable due to many difficulties in the atmospheric correction. Based on thermal radiance transfer equation, an attempt has been made in the paper to develop a mono-window algorithm for retrieving LST from Landsat TM6 data. Three parameters are required for the algorithm: emissivity, transmittance and effective mean atmospheric temperature. Method about determination of atmospheric transmittance is given in the paper through the simulation of atmospheric conditions with LOWTRAN 7 program. A practicable approach of estimating effective mean atmospheric temperature from local meteorological observation is also proposed in the paper when the in situ atmospheric profile data is unavailable at the satellite pass, which is generally the case in the real world especially for the images in the past. Sensitivity analysis of the algorithm indicates that the possible error of ground emissivity, which is difficult to estimate, has relatively insignificant impact on the probable LST estimation error i T, which is sensible to the possible error of transmittance i 6 and mean atmospheric temperature i T a . Validation of the simulated data for various situations of seven typical atmospheres indicates that the algorithm is able to provide an accurate LST retrieval from TM6 data. The LST difference between the retrieved and the simulated ones is less than 0.4°C for most situations. Application of the algorithm to the sand dunes across the Israel-Egypt border results in a reasonable LST estimation of the region. Based on this LST estimation, spatial variation of the interesting thermal phenomenon has been analysed for comparison of LST difference across the border. The result shows that the Israeli side does have significantly higher surface temperature in spite of its denser vegetation cover than the Egyptian side where bare sand is prevalent.  相似文献   

16.
This simulation study demonstrates that cirrus clouds and volcanic aerosols with atmospheric gases would greatly affect the transmission functions and brightness temperatures of infrared window channels in the VISSR Atmospheric Sounder (VAS), and VAS-derived sea surface temperature (SST) determinations. The ;clear air (CLR) retrieval equations should not be used in the presence of cirrus and high stratospheric aerosol loadings. An alternative five-window channel algorithm could be found that would work in arbitrary clear, cirrus or aerosol conditions, but the retrieval accuracy would decrease in comparison with the multi-channel SST (MCSST) algorithms for simply cirrus clouds, or aerosols only. In MCSST algorithms, channel 12 (3–94μ) is most important for CLR, or tenuous cirrus with any kind of aerosols, or moderate cirrus with weak aerosols, whereas for moderate cirrus combined with the strong aerosol, or dense cirrus with any kind of aerosols, channel 5 (13‐34μ) or channel 8 (11–22μ) becomes the most important. In addition, the effects of variations of water vapour profile, aerosol concentration, and sea surface reflection (SSR) on SST retrievals need to be considered.  相似文献   

17.
This paper presents an assessment of the performance of a hybrid method that allows a simultaneous retrieval of land‐surface temperature (LST) and emissivity (LSE) from remotely‐sensed data. The proposed method is based on a synergistic usage of the split‐window (SW) algorithm and the two‐temperature method (TTM) and combines the advantages of both procedures while mitigating their drawbacks. The method was implemented for thermal channels 76 (10.56 µm) and 78 (11.72 µm) of the Airborne Hyperspectral Scanner (AHS), which was flown over the Barrax test site (Albacete, Spain) in the second week of July 2005, within the framework of the Sentinel‐2 and Fluorescence Experiment (SEN2FLEX) field campaign. A set of radiometric measurements was performed in the thermal infrared region in coincidence with aircraft overpasses for different surface types, e.g. bare soil, water body, corn, wheat, grass. The hybrid method was tested and compared with a standard SW algorithm and the results obtained show that the hybrid method is able to provide better estimates of LST, with values of bias (RMSE) of the order of 0.8 K (1.9 K), i.e. about one third (one half) of the corresponding values of 2.7 K (3.4 K) that were obtained for bias (RMSE) when using the SW algorithm. These figures provide a sound indication that the developed hybrid method is particularly useful for surface and atmospheric conditions where SW algorithms cannot be accurately applied.  相似文献   

18.
The purpose of this study is to investigate the possibility of identifying overlapping clouds that contain thin cirrus overlying a lower-level water cloud by synergetic use of POLDER-3 (Polarization and Directionality of the Earth Reflectance) and MODIS (MODerate resolution Imaging Spectroradiometer) data. When thin cirrus clouds overlap the liquid cloud layer, the liquid information may be obtained by POLDER observations and the presence of the cirrus may be inferred from the MODIS CO2-slicing technique. An initial comparison of the POLDER cloud phase and the MODIS cloud-top pressure for one scene over East Asia also shows that a large portion of clouds declared as liquid water clouds by POLDER-3 correspond to the lower cloud-top pressures derived from MODIS. As a result, an overlapped cloud identification method is proposed under the assumption that the multilayered cloud would be present if the POLDER cloud phase is liquid water and the MODIS cloud-top pressure is less than 500 hPa. For the studied scene, the comparison of the multilayered cloud identification results with CloudSat and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations illustrates that the proposed method could detect multilayered clouds when the upper cirrus has a visible optical thickness of less than 2.0. Then the identification results are compared with the MODIS Cloud_Multi_Layer_Flag. It is indicated that the consistency between the multilayered clouds from the proposed synergy and MODIS-operational algorithm increases gradually from over 40% to nearly 100% with the increase of the confidence level of the MODIS multilayered clouds from the lowest to the highest. Further analysis suggests that the majority of multilayered clouds falsely classified as single-layered clouds by the proposed method may correspond to relatively thick cirrus covering lower-level water clouds. Additionally, an index by using the multilayered cloud detection differences from the two methods is proposed to provide some information on the optical thickness of the cirrus covering lower-level water cloud. Finally, quantitative comparisons are extended to four other scenes at different locations by using active measurements. The results also show that the mean visible optical thickness of the high-level clouds of the multilayered clouds detected by both methods (1.57) is remarkably less than that by only MODIS-operational method (2.84), which means that the differences between the results from the two methods are mainly caused by the different sensitivities to the visible optical thickness of the high-level cloud and could be used to indicate the range of the visible optical thickness of the cirrus clouds covering the lower-level water clouds.  相似文献   

19.
Land surface temperature (LST) is one of the key state variables for many applications. This article aims to apply our previously developed LST retrieval method to infrared atmospheric sounding interferometer (IASI) and atmospheric infrared sounder (AIRS) data. On the basis of the opposite characteristics of the atmospheric spectral absorption and surface spectral emissivity, a ‘downwelling radiance residual index’ (DRRI) has been recalled and improved to obtain LST and emissivity. To construct an efficient DRRI, an automatic channel selection procedure has been proposed, and 11 groups of channels have been selected within the range 800–1000 cm?1. The DRRI has been tested with IASI and AIRS data. For the IASI data, the radiosonde data have been used to correct for atmospheric effects and to retrieve LST, while the atmospheric profiles retrieved from AIRS data have been used to perform the atmospheric corrections and subsequently to estimate LST from AIRS data. The differences between IASI- and Moderate Resolution Imaging Spectroradiometer (MODIS)-derived LSTs are no more than 2 K, while the differences between AIRS- and MODIS-derived LSTs are less than 5 K. Even though an exceptionally problematic value occurred (–12.89 K), the overall differences between AIRS-estimated LST and the AIRS L2 LST product are no more than 5 K. Although the IASI-derived LST is more accurate than the AIRS-derived one, the convenient retrieval of AIRS atmospheric profile made this method more applicable. Limitations and uncertainties in retrieving LST using the DRRI method are also discussed.  相似文献   

20.
Land surface temperature (LST) and land surface emissivity (LSE) are two key parameters in global climate study. This article aims to cross-validate LST/LSE products retrieved from data of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the first geostationary satellite, Meteosat Second Generation (MSG), with Moderate Resolution Imaging Spectroradiometer (MODIS) LST/LSE version 5 products over the Iberian Peninsula and over Egypt and the Middle East. Besides time matching, coordinate matching is another requirement of the cross-validation. An area-weighted aggregation algorithm was used to aggregate SEVIRI and MODIS LST/LSE products into the same spatial resolution. According to the quality control (QC) criterion and the view angle, the cross-validation was completed under clear-sky conditions and within a view angle difference of less than 5° for the two instruments to prevent land surface anisotropic effects. The results showed that the SEVIRI LST/LSE products are consistent with MODIS LST/LSE products and have the same trend over the two study areas during both the daytime and the night-time. The SEVIRI LST overestimates the temperature by approximately 1.0 K during the night-time and by approximately 2.0 K during the daytime compared to MODIS products over these two study areas. The SEVIRI LSE underestimates by about 0.015 in 11 μm and by about 0.025 in 12 μm over the Iberian Peninsula. However, both LSEs agree and show a difference of less than 0.01 over Egypt and the Middle East.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号