首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 125 毫秒
1.
通过在氩气中碳化含有乙酰丙酮金属盐的电纺聚丙烯腈纳米纤维合成了镶嵌(Fe1-xCox)0.8Ni0.2(x=0.25,0.50,0.75)合金纳米粒子的碳纳米纤维,用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、振动样品磁强计(VSM)和矢量网络分析仪(VNA)等对其物相、形貌、微观结构、静磁及电磁特性进行表征和分析,并根据传输线理论模拟计算了2~18 GHz频率范围内的微波吸收性能。结果表明:所制备的复合纳米纤维具有典型的铁磁特征,由无定形碳、石墨和面心立方结构Fe-Co-Ni合金三相组成,原位形成的合金纳米粒子沿纤维轴向均匀分布,且被有序石墨层所包覆。磁损耗和介电损耗间的协同作用及特殊的核/壳微观结构使仅含5%(w/w)的(Fe1-xCox)0.8Ni0.2/C复合纳米纤维的硅胶基吸波涂层表现出优异的微波吸收性能。当涂层厚度为1.1~5.0 mm时,x=0.25、0.50和0.75的样品最小反射损耗分别达到-78.5、-80.2和-63.4 d B,反射损耗在-20 d B以下的吸收带宽分别为14.9、14.8和14.5 GHz,几乎覆盖整个S波段至Ku波段。通过调节合金的组成可对材料的电磁特性及微波吸收性能进行一定程度的控制。  相似文献   

2.
采用静电纺丝法制备(1-x)Ni0.5Zn0.5Fe2O4-(x)Pb(Zr0.52Ti0.48)O3(简称为(1-x)NZFO-(x)PZT, x=0.1、0.2、0.3、0.4、0.5)磁电复合纳米纤维, 研究了PZT含量对复合纳米纤维结构、电磁特性及微波吸收性能的影响。所有样品均由尖晶石结构NZFO和钙钛矿结构PZT两相所组成。由于NZFO磁损耗与PZT介电损耗的协同效应及界面效应的加强, 适量PZT相的引入可改善复合纳米纤维吸波涂层的电磁阻抗匹配和衰减特性, 提高微波吸收性能。x=0.3和0.4的复合纳米纤维分别在低频和高频范围表现出最强的微波吸收能力。当涂层厚度为2.5~5.0 mm时, x=0.3样品的最小反射损耗在6.1 GHz处达-77.2 dB, 反射损耗小于-10 dB的有效吸收带宽为11.2 GHz(2.8~12.9和16.9~18 GHz);x=0.4样品的最小反射损耗位于18 GHz处为-37.6 dB, 有效吸收带宽达到12.5 GHz(3.3~12.5和14.7~18 GHz)。  相似文献   

3.
采用静电纺丝法制备(1-x)Ni0.5Zn0.5Fe2O4-(x)Pb(Zr0.52Ti0.48)O3(简称为(1-x)NZFO-(x)PZT, x=0.1、0.2、0.3、0.4、0.5)磁电复合纳米纤维, 研究了PZT含量对复合纳米纤维结构、电磁特性及微波吸收性能的影响。所有样品均由尖晶石结构NZFO和钙钛矿结构PZT两相所组成。由于NZFO磁损耗与PZT介电损耗的协同效应及界面效应的加强, 适量PZT相的引入可改善复合纳米纤维吸波涂层的电磁阻抗匹配和衰减特性, 提高微波吸收性能。x=0.3和0.4的复合纳米纤维分别在低频和高频范围表现出最强的微波吸收能力。当涂层厚度为2.5~5.0 mm时, x=0.3样品的最小反射损耗在6.1 GHz处达-77.2 dB, 反射损耗小于-10 dB的有效吸收带宽为11.2 GHz(2.8~12.9和16.9~18 GHz);x=0.4样品的最小反射损耗位于18 GHz处为-37.6 dB, 有效吸收带宽达到12.5 GHz(3.3~12.5和14.7~18 GHz)。  相似文献   

4.
通过在氩气中碳化含有乙酰丙酮金属盐的电纺聚丙烯腈纳米纤维合成了镶嵌(Fe1-xCox0.8Ni0.2x=0.25,0.50,0.75)合金纳米粒子的碳纳米纤维,用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、振动样品磁强计(VSM)和矢量网络分析仪(VNA)等对其物相、形貌、微观结构、静磁及电磁特性进行表征和分析,并根据传输线理论模拟计算了2~18 GHz频率范围内的微波吸收性能。结果表明:所制备的复合纳米纤维具有典型的铁磁特征,由无定形碳、石墨和面心立方结构Fe-Co-Ni合金三相组成,原位形成的合金纳米粒子沿纤维轴向均匀分布,且被有序石墨层所包覆。磁损耗和介电损耗间的协同作用及特殊的核/壳微观结构使仅含5%(w/w)的(Fe1-xCox0.8Ni0.2/C复合纳米纤维的硅胶基吸波涂层表现出优异的微波吸收性能。当涂层厚度为1.1~5.0 mm时,x=0.25、0.50和0.75的样品最小反射损耗分别达到-78.5、-80.2和-63.4 dB,反射损耗在-20 dB以下的吸收带宽分别为14.9、14.8和14.5 GHz,几乎覆盖整个S波段至Ku波段。通过调节合金的组成可对材料的电磁特性及微波吸收性能进行一定程度的控制。  相似文献   

5.
通过静电纺丝技术和热处理制备了Li0.35Zn0.3Fe2.35O4纳米纤维和碳纳米纤维,并将它们各自均匀分散在硅橡胶基质中,测量了相应复合体在2~18 GHz频率范围内的相对复介电常数和复磁导率,并根据传输线理论评估了由它们所构成的单层和双层结构吸波体的微波吸收特性。结果显示由于Li0.35Zn0.3Fe2.35O4纳米纤维与碳纳米纤维的电磁特性的有机结合,双层吸波体的微波吸收性能明显优于同厚度的单层吸波体。当以厚为1.8 mm的Li0.35Zn0.3Fe2.35O4纳米纤维/硅橡胶复合体为吸收层和厚为0.2mm的碳纳米纤维/硅橡胶复合体为匹配层时,双层吸波体的反射率在13.9 GHz达到一个最小值-47.8 dB,反射率低于-10 dB的吸收带宽为8.8 GHz,频率范围为9.2~18 GHz,反射率小于-20 dB的频率范围为11.5~18 GHz,带宽为6.5 GHz,覆盖整个Ku波段。优化设计的双层吸波体有望作为一种轻质高效的Ku波段微波吸收材料。  相似文献   

6.
通过静电纺丝技术和热处理制备了Li0.35Zn0.3Fe2.35O4纳米纤维和碳纳米纤维,并将它们各自均匀分散在硅橡胶基质中,测量了相应复合体在2~18GHz频率范围内的相对复介电常数和复磁导率,并根据传输线理论评估了由它们所构成的单层和双层结构吸波体的微波吸收特性。结果显示由于Li0.35Zn0.3Fe2.35O4纳米纤维与碳纳米纤维的电磁特性的有机结合,双层吸波体的微波吸收性能明显优于同厚度的单层吸波体。当以厚为1.8mm的Li0.35Zn0.3Fe2.35O4纳米纤维/硅橡胶复合体为吸收层和厚为0.2mm的碳纳米纤维/硅橡胶复合体为匹配层时,双层吸波体的反射率在13.9GHz达到一个最小值-47.8dB,反射率低于-10dB的吸收带宽为8.8GHz,频率范围为9.2~18GHz,反射率小于-20dB的频率范围为11.5~18GHz,带宽为6.5GHz,覆盖整个Ku波段。优化设计的双层吸波体有望作为一种轻质高效的Ku波段微波吸收材料。  相似文献   

7.
龚雷  刘敏  向军 《无机化学学报》2020,36(11):2113-2123
使用静电纺丝技术结合水热法制备了表面锚定ZnO纳米颗粒的亚微米碳纤维(ZnO/SDCFs)复合物,并详细研究了反应溶液的pH值对复合物的结构、组成、电磁特性和吸波性能的影响。结果显示,随着pH值的升高,ZnO的含量增加,介电常数、介电损耗以及电磁衰减能力均下降,但阻抗匹配程度提高。相比于纯碳纤维,所有ZnO/SDCFs复合物的吸波性能均得到不同程度的加强。其中,pH值等于8时所制备的ZnO/SDCFs-8复合物拥有最好的吸波性能,主要归因于电磁衰减能力和阻抗匹配间的更好平衡。当ZnO/SDCFs-8的填充量仅为2.5%(质量分数)、厚度为1.7 mm时,相应吸波涂层的最小反射损耗达到-44.1 dB,低于-10 dB的有效吸收带宽为6.1 GHz,频率范围为11.9~18 GHz;当厚度为3.0 mm时,有效吸收带宽可提高到11.8 GHz(6.2~18 GHz)。  相似文献   

8.
聚苯胺/蒙脱土纳米复合材料的制备及吸波性能研究   总被引:5,自引:0,他引:5  
以十二烷基苯磺酸(DBSA)作为乳化剂和掺杂剂,通过乳液聚合的方法制备了DBSA掺杂聚苯胺/蒙脱土(PANI-DBSA/MMT)纳米复合物,并对其微波吸收特性进行了研究.通过X射线衍射(XRD)、傅立叶红外(FT-IR)和四探针测试仪对复合物进行了初步表征.结果表明,PANI-DBSA/MMT复合物中MMT层间距离明显扩大,纳米复合物中的PANI以emeraldine盐的形式存在,是一种典型的插层型纳米复合物.利用HP8722ES矢量网络分析仪测量了2 mm厚、PANI-DBSA/MMT含量为50 wt%的试样在2.0~18 GHz的复介电常数和复磁导率,经计算得到以反射损耗表示的微波吸收曲线,发现PANI-DBSA/MMT纳米复合物在9.1~12.5 GHz范围内反射损耗小于-10 dB,在11 GHz处存在的最大反射损耗为-15.8 dB.  相似文献   

9.
为了降低吸波剂Co_3Fe_7的密度,本文采用原位聚合Fe~(3+)-Co~(2+)/碳前驱体及高温碳化制备得到Co_3Fe_7@C复合微波吸收材料。X射线衍射(XRD)和扫描电子显微镜(SEM)测试结果表明Co_3Fe_7颗粒被石墨碳层包覆形成核壳结构,复合物的比表面积和表观密度分别为358.5 m~2·g~(-1)、2.25 g·cm~(-3)。核壳结构Co_3Fe_7@C复合物显示出优异的微波吸收性能,当涂层厚度为2 mm时,其最低反射损耗(RL)达到最低值-43.5 dB,对应的有效带宽为4.1 GHz,归因于复合物有效的阻抗匹配特性及多重界面极化效应。由于低密度及优异的微波吸收性能,Co_3Fe_7@C复合物有望作为一种潜在的轻质、高效微波吸收材料。  相似文献   

10.
通过静电纺丝技术制备了多孔软硬磁Ni_(0.5)Zn_(0.5)Fe_2O_4/SrFe_(12)O_(19)复合纤维,利用综合热重分析仪(TG-DSC)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能谱仪(EDS)和矢量网络分析仪(VNA)等对复合纤维的晶体结构、微观形貌和电磁性能进行了表征,研究了不同软硬磁质量比对纤维结构和性能的影响。结果表明:900℃下制备的复合纤维具有立体多孔结构,软硬磁质量比为1∶3时,复合纤维的比表面积达到55 m~2·g~(-1)。吸波性能测试结果显示,当吸波剂涂层厚度为3.5 mm时,复合纤维在10.6 GHz处反射损失(RL)值达到-31.9 dB,在2~18 GHz频率范围内,RL值小于-10 dB的吸收带宽达到10.5 GHz,覆盖了整个X波段(8.2~12.4 GHz)和Ku波段(12.4~18 GHz),显示出优异的宽波段吸收性能。  相似文献   

11.
采用次序模板法合成了单、双壳层的中空铁酸镍(NiFe2O4)材料,通过改变前驱体溶液组成及煅烧条件等因素实现了对产物形貌的调控.在中空NiFe2O4颗粒表面原位包覆聚多巴胺,再经过碳化处理,制备了具有中空多壳层结构(HoMS)的NiFe2O4/C复合吸波材料;考察了其电磁参数,计算了其吸波性能,分析了不同复合结构对性能的影响.结果表明,中空多壳层结构能够显著降低材料的密度,而碳薄层不仅能够改善其阻抗匹配性,而且提升了材料的反射损耗性能.其中,双壳层NiFe2O4/C复合物的吸波性能最佳,当样品厚度为3.5 mm时,材料在8.44 GHz处反射损失最小,为-32.35 dB;当样品厚度为2.0 mm时,材料在14.01~17.69 GHz范围内反射损耗小于-10 d B,有效吸收频宽为3.68 GHz.这些优异性能主要源于独特的中空多壳层结构增加了电磁波多次反射/散射的概率,提供了更多的界面极化,实现了电磁波的快速...  相似文献   

12.
采用溶胶-凝胶法并辅以微波热处理合成了Na掺杂改性的Li2-xNaxMnSiO4/C(x=0, 0.05, 0.09, 0.13)复合正极材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 恒电流充放电测试、 循环伏安(CV)和交流阻抗(EIS)测试等对材料进行了表征. 结果表明, 经微波辐射后得到的电极材料具有Pmn21型空间结构, 其碳层分布均匀, 粒径细小均匀, 约为15~30 nm. 在微波辅助原位碳包覆和Na掺杂共同作用下, 复合材料的电荷转移电阻明显降低, Li+扩散速率增大, 展现出优良的电化学性能. 在0.1C倍率下Li1.91Na0.09MnSiO4/C样品首次放电比容量为211 mA∙h/g, 50次循环后仍保持80 mA∙h/g的可逆容量; 0.5C和2.0C倍率下的放电比容量分别为106和53 mA∙h/g, 大电流下的可逆容量明显提高.  相似文献   

13.
唐蒙  刘刚  邢祎琳  张爱波 《应用化学》2017,34(2):225-232
采用溶剂热法将磁性Fe_3O_4粒子附着在聚乙烯亚胺(PEI)修饰的多壁碳纳米管(MWNTs)表面,制备了兼具介电损耗和磁损耗的复合吸波微粒Fe_3O_4/MWNTs。利用X射线衍射仪(XRD)、傅里叶红外光谱仪(FTIR)、热重分析仪(TGA)、透射电子显微镜(TEM)及矢量网络分析仪等分析了Fe_3O_4/MWNTs复合粒子的结构、形貌和吸波性能。TEM结果表明,由于PEI的修饰作用,Fe_3O_4/MWNTs复合粒子具有良好的分散性。XRD结果显示,附着的Fe_3O_4粒子具有完整的晶型结构。吸波性能结果表明,PEI修饰的Fe_3O_4/MWNTs复合微粒拥有非常优异的吸波性能,随着厚度的增加,复合微粒的吸收峰向低频处移动。在厚度为3.2 mm,频率为6.16 GHz时,出现了最大反射损耗-42.9 d B,反射损耗大于-10 d B的频段为1.42 GHz(5.40~6.82 GHz)。  相似文献   

14.
通过金属点蚀技术制备了表面多孔形貌的羰基铁粉(PCIP),并采用共沉淀及原位聚合方法,将CoFe2O4与聚苯胺(PANI)负载于多孔羰基铁表面,得到具有电磁吸收性能的PCIP/CoFe2O4/PANI复合材料.通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、热重分析仪(TGA)及矢量网络分析仪(VNA)等对复合材料的形貌、成分和吸波性能进行了研究.结果表明,CoFe2O4/PANI团聚于PCIP表面,显著提升了复合材料电损耗能力,促进了低频电磁波的1/4波长干涉相消.当苯胺添加量为0.5 mL,复合材料在频率为5.7 GHz时,反射损耗达到-22.9 dB,低频吸波性能得到大幅提升.利用1/4波长干涉相消理论及电磁波界面反射模型对复合材料低频吸波性能提升的内在原因进行了分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号