首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anterior forebrain (AF) pathway of songbirds has an essential but poorly understood function during song learning, a process requiring auditory experience. Consistent with a role in processing auditory information, two nuclei of the AF, the lateral magnocellular nucleus of the anterior neostriatum (IMAN) and Area X (X), contain some of the most complex auditory neurons known. In adult zebra finches, these neurons are strongly selective for both spectral and temporal properties of song: They respond more robustly to the bird's own song (BOS) than to songs of conspecific individuals, and they respond less well to BOS if it is played in reverse. IMAN and X neurons of young finches early in the process of song learning (30-45 days of age) are also song responsive, but lack the song and order selectivity present in adult birds. By an intermediate stage of learning (60 days), when birds have experience of both tutor song and their own developing (plastic) song, AF neurons have significant song and order selectivity for both tutor song and BOS (in this case, plastic song). The degree of BOS selectivity is still less than that found in adults, however. In addition, neurons at 60 days are heterogenous in their preference for BOS versus tutor song: Most prefer BOS, some prefer tutor song, and others respond equally to both songs. The selectivity of adult AF auditory neurons therefore arises rapidly during development in neurons that are initially unselective. These neurons are one of the clearest examples of experience-dependent acquisition of complex stimulus selectivity. Moreover, the neural selectivity for both BOS and tutor song at 60 days raises the possibility that experience of both songs during learning contributes to the properties of individual AF neurons.  相似文献   

2.
One of the hearing system's basic properties that determines the detection of signals is its frequency selectivity. In the natural environment, a songbird may achieve an improved detection ability if the neuronal filters of its auditory system could be sharpened to adapt to the spectrum of the background noise. To address this issue, we studied 35 multi-unit clusters in the input layer of the primary auditory forebrain of nine European starlings (Sturnus vulgaris). Microelectrodes were chronically implanted in this songbird's cortex analogue and the neuronal activity was transmitted from unrestrained birds via a miniature FM transmitter. Frequency tuning curves (FTCs) and inhibitory sidebands were determined by presenting a matrix of frequency-level combinations of pure tones. From each FTC, the characteristic frequency (CF) and several parameters describing the neurons' filter characteristics were derived and compared to the same recording site's filter function while simultaneously stimulating with a continuous CF tone 20 dB above the response threshold. Our results show a significant improvement of frequency selectivity during two-tone stimulation, indicating that spectral filtering in the starling's auditory forebrain depends on the acoustic background in which a signal is presented. Moreover, frequency selectivity was found to be a function of the time over which the stimulus persisted, since FTCs were much sharper and inhibitory sidebands were largely expanded several milliseconds after response onset. Neuronal filter bandwidths during two-tone stimulation in the auditory forebrain are in good agreement with psychoacoustically measured critical bandwidths in the same species. Radiotelemetry proved to be a powerful tool in studying neuronal activity in freely behaving birds.  相似文献   

3.
Neurogenesis in the adult olfactory epithelium is highly regulated in vivo. Little is known of the molecular signals which control this process, although contact with the olfactory bulb or with astrocytes has been implicated. Explants of mouse olfactory epithelium were grown in the presence or absence of several peptide growth factors. Basic fibroblast growth factor (FGF2) stimulated differentiation of sensory neurons in adult and embryonic olfactory epithelium. Other growth factors tested were ineffective. FGF2-stimulated neurons were born in vitro and expressed neurofilament, neural cell adhesion molecule, and beta-tubulin. The cells also expressed olfactory marker protein, a marker for mature olfactory sensory neurons in vivo. These bipolar neurons did not express glial fibrillary acidic protein or low-affinity nerve growth factor receptor. These results indicate that neither astrocytes nor olfactory bulb are necessary for differentiation of olfactory sensory neurons in vitro.  相似文献   

4.
Suprachiasmatic nuclei (SCN) from hypothalami of postnatal rats were maintained for 18-39 days in vitro as organotypic slice explants. Neuronal subtypes containing vasopressin (VP), vasoactive intestinal polypeptide (VIP), gastrin releasing hormone (GRP), and GABA were immunocytochemically identifiable in these cultures. In situ hybridization histochemistry was compatible with these SCN slice explant cultures, and mRNA encoding for VP was detected bilaterally within these nuclei. After 18 days in vitro, both VP mRNA and VP immunoreactivity increased from levels present on postnatal days 4 (the earliest age from which the explanted tissue was derived) to levels typical of adult SCNs. In contrast, the GRP expression remained low, characteristic of early postnatal animals and far lower than adult levels. This suggests that the developmental cues or programs necessary for enhanced VP expression are maintained in these cultures, while those affecting GRP expression are absent or inhibited. VIP-containing neurons were numerous in the cultures. Culture slices appeared healthy, and similar numbers and distributions of identifiable neurons within the SCN were observed, whether or not the slices were grown in the presence of serum. EM analysis revealed that the SCN in vitro is composed of tightly packed neurons, processes, and abundant synapses containing both clear and dense core vesicles, closely resembling the SCN in vivo. Vasopressinergic neuronal somata contained extensive Golgi systems and labeled secretory granules, the latter organelle being present also within processes and synaptic terminals. GABA-immunopositive processes and synaptic profiles were abundant, with labeling occurring particularly over secretory vesicles and mitochondria. This slice culture system effectively maintained much of the intrinsic organization and cellular components of the SCN for long periods in vitro and should be an excellent model system for studying the intrinsic molecular mechanisms and extrinsic cues which regulate neuronal phenotype in this circadian pacemaker.  相似文献   

5.
Congenital malformations convey a major financial and social burden to society. Epidemiologic, clinical, and animal studies indicate that these malformations occur in early pregnancy, are influenced by an aberrant metabolic fuel milieu, and seem to result from a combination of more than one factor acting synchronously. Unfortunately, during the critical period of organogenesis, the pregnancy is hardly recognizable, making evaluation and study of relevant maternal embryonic parameters extremely difficult. Additionally, there are obvious limitations to human study for technical and ethical reasons. Animal experimentation, however, has demonstrated that these malformations can be produced in many vertebrates and are similar to those seen in humans. The mechanism for induction of dysmorphogenesis in experimental diabetic pregnancy has been shown to include generation of free oxygen radicals and are associated with alterations in the embryonic levels of arachidonic acid, prostaglandins, and myo-inositol. Most of the earlier experimental studies focused on defects at the level of the embryo excluding the extraembryonic membranes. Current investigations provide evidence that the yolk sac has an integral role in diabetic embryopathy. The experimental use of several different compounds, such as arachidonic acid, myo-inositol, and antioxidants, offers significant promise for the future in possibly serving as a pharmacologic prophylaxis against diabetic embryopathy.  相似文献   

6.
The characteristic features of a brain with Alzheimer disease (AD) include the presence of neuritic plaques composed of amyloid beta-protein (Abeta) and reductions in the levels of cholinergic markers. Neurotoxic responses to Abeta have been reported in vivo and in vitro, suggesting that the cholinergic deficit in AD brain may be secondary to the degeneration of cholinergic neurons caused by Abeta. However, it remains to be determined if Abeta contributes to the cholinergic deficit in AD brain by nontoxic effects. We examined the effects of synthetic Abeta peptides on the cholinergic properties of a mouse cell line, SN56, derived from basal forebrain cholinergic neurons. Abeta 1-42 and Abeta 1-28 reduced the acetylcholine (AcCho) content of the cells in a concentration-dependent fashion, whereas Abeta 1-16 was inactive. Maximal reductions of 43% and 33% were observed after a 48-h treatment with 100 nM of Abeta 1-42 and 50 pM of Abeta 1-28, respectively. Neither Abeta 1-28 nor Abeta 1-42 at a concentration of 100 nM and a treatment period of 2 weeks was toxic to the cells. Treatment of the cells with Abeta 25-28 (48 h; 100 nM) significantly decreased AcCho levels, suggesting that the sequence GSNK (aa 25-28) is responsible for the AcCho-reducing effect of Abeta. The reductions in AcCho levels caused by Abeta 1-42 and Abeta 1-28 were accompanied by proportional decreases in choline acetyltransferase activity. In contrast, acetylcholinesterase activity was unaltered, indicating that Abeta specifically reduces the synthesis of AcCho in SN56 cells. The reductions in AcCho content caused by Abeta 1-42 could be prevented by a cotreatment with all-trans-retinoic acid (10 nM), a compound previously shown to increase choline acetyltransferase mRNA expression in SN56 cells. These results demonstrate a nontoxic, suppressive effect of Abeta on AcCho synthesis, an action that may contribute to the cholinergic deficit in AD brain.  相似文献   

7.
Our purpose is to assess whether genotypes of the vitamin D receptor (VDR) and estrogen receptor (ER) and their interaction influence changes in bone mass in postmenopausal Caucasian women with and without hormone replacement therapy (HRT). A population of 108 US Mid-West women who participated in a study of low-dose continuous estrogen/progestin was genotyped at the VDR BsmI site and the ER XbaI and PvuII sites. Adequate vitamin D and calcium nutritional intakes were assured in all the study subjects. For the 3.5-year duration of the study, we analyzed changes in bone mineral density (BMD) at the spine, femoral neck, distal radius, and the total body (total body bone mineral content, tbBMC). We adjusted for confounding factors, such as age and weight, in the analysis. We found that VDR and/or ER genotypes and/or their interaction generally had significant effects on the changes in the bone mass measurements in both the placebo and HRT groups. When a significant gene-by-gene interaction exists between VDR and ER genotypes, failure to account for them in analyses may yield nonsignificant results, even if significant genotypic effects exist. The amount of variation in changes in bone mass measurements explained by the total genotypic effects of the VDR and ER loci varies from approximately 1.0% (for the tbBMC changes in combined placebo and HRT groups) to approximately 18.7% (for the spine BMD changes in the HRT group). These results suggest that individual genotypes are important factors in determining changes in bone mass in the elderly with and without HRT and thus may need to be considered with respect to the treatment to preserve bone mass in elderly Caucasian women.  相似文献   

8.
The role of the developing cholinergic basal forebrain system on cognitive behaviors was examined in 7 day-old rats by giving lesions with intraventricular injections of 192 IgG-saporin or saline. Rats were subjected to passive avoidance on postnatal days (PND) 22–23, water maze testing on PND 50–60, and a open-field test (in which reactions to spatial and object novelty were measured) on PND 54. Behavioral effects of the lesions were evident only in the open-field test with 5 objects. Unlike controls, the lesioned rats did not detect a spatial change after a displacement of 2 of the 5 objects. Control and lesioned rats, however, showed comparable novelty responses to an unfamiliar object. Lesion effectiveness was confirmed by 75% and 84% decreases in choline acetyltransferase activity in cortex and hippocampus. These results suggest that the developing cholinergic system may be involved in spatial information processing or attention to spatial modifications. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
Conclusions The variation of the radial pressure along the height of a metal fiber material being pressed in the course of the latter's densification is governed by a hyperbolic law. With increase in density, the pressure variation along the specimen height diminishes. As a result of an experimental and analytical investigation, an equation has been proposed for determining the radial pressure at any point on the surface of a specimen being pressed. Using this equation, it is possible to establish the character and regions of structural heterogeneity in a pressed metal fiber material.Translated from Poroshkovaya Metallurgiya, No. 7 (115), pp. 5–8, July, 1972.  相似文献   

10.
The acoustic responses of cells in the basal forebrain were studied in the adult waking guinea pig. Frequency receptive fields were obtained across wide frequency (0.094-45.0 kHz) and intensity (0-90 dB) ranges. A total of 326 recordings were obtained in 26 electrode penetrations from five subjects; 205 from the globus pallidus (GP), 98 from the caudate-putamen (CPu) and 23 from the central nucleus of the amygdala (ACE). Twenty-nine recordings exhibited acoustic responses (GP=20 (9.8%); CPu=9 (9.2%); ACE=0). Cells in the regions of the GP that project to the primary auditory cortex (ACx) exhibited frequency tuning that was dominantly suppressive. Responses in the CPu were excitatory, but poorly tuned. The spontaneous rate of discharge of GP cells that yielded complete tuning data was positively correlated with power in the beta bands (12-25 and 25-50 Hz) and negatively correlated with power in the delta band (1-4 Hz) of the EEG of the ACx. These findings suggest that acoustically tuned neurons in the GP that are inhibited by tones are involved in the regulation of auditory cortical state, possibly promoting deactivation to unimportant sounds, and may be cholinergic in nature.  相似文献   

11.
Basal forebrain cholinergic neurons (BFCNs) provide the major subcortical source of cholinergic input to cerebral cortex and play an important role in regulating cortical activity. The present study examined the ability of BFCNs to influence neocortical neuronal growth by examining effects of the presence of BFCNs on certain cortical neurons grown under the controlled conditions of dissociated cell culture. Initial experiments demonstrated distinctive morphological features of a population of neurons (labeled with SMI-32, a monoclonal antibody to nonphosphorylated neurofilament proteins that labels pyramidal neurons in vivo) in cocultures containing basal forebrain (BF) and cortical cells. These neurons (large neurons immunoreactive for SMI-32 [SMI-32(+) neurons]) were characterized as having extensive axons, greater soma size, and more dendritic growth than did most SMI-32(+) neurons in the cultures. Staining for SMI-32 in cocultures in which the cortical neurons were labeled with a fluorescent marker before adding the BF cells indicated that virtually all large SMI-32(+) neurons were of cortical origin. Eliminating BFCNs with the selective cholinergic immunotoxin 192 IgG-saporin resulted in a >80% decrease in the number of large SMI-32(+) neurons, although causing little damage to other cells in the treated cultures; this suggests that survival or maintenance of large SMI-32(+) neurons may depend on ongoing trophic support from BFCNs. Thus, present findings suggest that BFCNs may provide powerful growth- and/or survival-enhancing signals to a subset of cortical neurons.  相似文献   

12.
An area of the caudal forebrain of male zebra finches, the Archi-Neostriatum caudale (ANC), which is active during arousal (Bischof & Herrmann, 1986, 1988), shows rearing-dependent changes in neuron morphology (Rollenhagen & Bischof, 1991). We demonstrate here that rearing conditions also affect the shape of spines of one of the four ANC neuron types. This neuron type was examined in birds reared under five different conditions--in isolation (1), caged (2), in the aviary (3), and with social contact (4) or chasing (5) after an isolation period. Our results show that social experience determines the proportion of the three types of spines (thin, mushroom, and stubby) of the investigated neuron type. Rearing conditions and short social contact also affect the spine stem length of the thin spine type. Long-term isolation results in a reduction in number and elongation of shafts of thin spines, along with an increase of stubby-and mushroom-shaped spines. Short-term social contact or arousal enhances the number of mushroom-and thin-shaped spines and reduces the length of spine stems of thin spines. We suggest that isolation prevents the ANC neuron from reaching full development. The increase of mushroom and thin spine types due to social contact indicates that the stubby-shaped spines are replaced by, or transformed into, mushroom-shaped spines, and the mushroom-shaped spines are replaced by, or transformed into, thin spines. These results confirm and extend the experimental background for our hypothesis (Rollenhagen & Bischof, 1991) that social contact is necessary for development of normal morphology of ANC neurons.  相似文献   

13.
Excitation at widely dispersed loci in the cerebral cortex may represent a neural correlate of consciousness. Accordingly, each unique combination of excited neurons would determine the content of a conscious moment. This conceptualization would be strengthened if we could identify what orchestrates the various combinations of excited neurons. In the present paper, cholinergic afferents to the cerebral cortex are hypothesized to enhance activity at specific cortical circuits and determine the content of a conscious moment by activating certain combinations of postsynaptic sites in select cortical modules. It is proposed that these selections are enabled by learning-related restructuring that simultaneously adjusts the cytoskeletal matrix at specific constellations of postsynaptic sites giving all a similar geometry. The underlying mechanism of conscious awareness hypothetically involves cholinergic mediation of linkages between microtubules and microtubule-associated protein-2 (MAP-2). The first reason for proposing this mechanism is that previous studies indicate cognitive-related changes in MAP-2 occur in cholinoceptive cells within discrete cortical modules. These cortical modules are found throughout the cerebral cortex, measure 1-2 mm2, and contain approximately 10(3)-10(4) cholinoceptive cells that are enriched with MAP-2. The subsectors of the hippocampus may function similarly to cortical modules. The second reason for proposing the current mechanism is that the MAP-2 rich cells throughout the cerebral cortex correspond almost exactly with the cortical cells containing muscarinic receptors. Many of these cholinoceptive, MAP-2 rich cells are large pyramidal cell types, but some are also small pyramidal cells and nonpyramidal types. The third reason for proposing the current mechanism is that cholinergic afferents are module-specific; cholinergic axons terminate wholly within individual cortical modules. The cholinergic afferents may be unique in this regard. Finally, the tapering apical dendrites of pyramidal cells are proposed as primary sites for cholinergic mediation of linkages between MAP-2 and microtubules because especially high amounts of MAP-2 are found here. Also, the possibility is raised that muscarinic actions on MAP-2 could modulate microtubular coherence and self-collapse, phenomena that have been suggested to underlie consciousness.  相似文献   

14.
The response of CD8+ T cells to allogeneic tumor was studied by adoptive transfer of cells from TCR transgenic 2C mice specific for Ld alloantigen. Transferred cells were monitored during the course of a response to i.p. challenge with live P815 (H-2d) using the 1B2 mAb specific for the 2C TCR. Tumor was present in the draining LN and spleen within 3 to 4 days of challenge. The first changes in 1B2+ cells occurred in the spleen on day 4; VLA-4 expression increased in an Ag-specific manner and L-selectin expression decreased in an Ag-nonspecific manner. The number of 1B2+ cells in the spleen declined over days 4 to 6. The first detectable increase in CD25 expression and blast transformation was in the peritoneal cavity beginning days 5 and 6. Clonal expansion was largely limited to this site and was maximal on day 8. As expansion occurred in the peritoneal cavity; the number of 1B2+ cells in the draining LN and spleen also increased. These cells had an activated phenotype (CD44(high), VLA-4(high)) but most did not express CD25 and were not blasts. These results suggest that initial Ag recognition in the spleen results in altered expression of adhesion receptors so that cells gain access to the peritoneal cavity where they undergo clonal expansion and differentiation. Following the response, 1B2+ cells decline in number but a memory population (CD44(high), L-selectin(high and low)) persists for long times in the spleen and LN.  相似文献   

15.
The results of collision and refractory period tests were used to compute conduction velocity estimates for reward-relevant neurons activated by electrodes aimed approximately 3 mm apart along the trajectory of the medial forebrain bundle (MFB). Collision tests consisted of delivering pairs of pulses in alternating fashion to the lateral hypothalamus and ventral tegmental area. As the interval between pulses was increased the behavioral effectiveness of double-pulse stimulation abruptly increased and then levelled off at longer pulse-pair intervals. In 6 subjects the C-T interval at which the abrupt rise was observed ranged from 1.0 to 3.0 ms. Refractory periods were estimated using an analogous paradigm but with both pulses applied through the same electrode. Recovery was first evident at pulse-pair intervals greater than 0.4-0.6 ms. Conduction velocity was determined for each subject by dividing the interelectrode distance by the difference between the collision interval and the refractory period; a range of 1.0-4.5 m/s was obtained, values that are inconsistent with the reported conduction velocities for catecholaminergic fibers. It is proposed that the substrate for brain-stimulation reward in the MFB consists of small, myelinated, non-catecholaminergic fibers.  相似文献   

16.
The P19 embryonal carcinoma cell line represents a pluripotential stem cell that can differentiate along the neural or muscle cell lineage when exposed to different environments. Exposure to retinoic acid induces P19 cells to differentiate into neurons and astrocytes that express similar developmental markers as their embryonic counterparts. We examined the expression of gap junction genes during differentiation of these stem cells into neurons and astrocytes. Untreated P19 cells express at least two gap junction proteins, connexins 26 and 43. Connexin32 could not be detected in these cells. Treatment for 96 hr with 0.3 mM retinoic acid induced the P19 cells to differentiate first into neurons followed by astrocytes. Retinoic acid produced a decrease in connexin43 mRNA, protein, and functional gap junctions. Connexin26 message was not affected by retinoic acid treatment. The neurons that developed consisted of small round cell bodies extending two to three neurites and expressed MAP2. Connexin26 was detected at sites of cell-cell and cell-neurite contact within 3 days following differentiation with retinoic acid. The astrocytes were examined for production of their intermediate filament marker, glial fibrillary acidic protein (GFAP). GFAP was first detected at 8 days by Western blotting. In culture, astrocytes co-expressed GFAP and connexin43 similar to primary cultures of mouse brain astrocytes. These results suggest that differentiation of neurons and glial cells involves specific connexin expression in each cell type. The P19 cell line will provide a valuable model with which to examine the role gap junctions play during differentiation events of developing neurons and astrocytes.  相似文献   

17.
18.
A three-dimensional cell culture system was used as a model to study the influence of low levels of mercury in the developing brain. Aggregating cell cultures of fetal rat telencephalon were treated for 10 days either during an early developmental period (i.e., between days 5 and 15 in vitro) or during a phase of advanced maturation (i.e., between days 25 and 35) with mercury. An inorganic (HgCl2) and an organic mercury compound (monomethylmercury chloride, MeHgCl) were examined. By monitoring changes in cell type-specific enzymes activities, the concentration-dependent toxicity of the compounds was determined. In immature cultures, a general cytotoxicity was observed at 10(-6) M for both mercury compounds. In these cultures, HgCl2 appeared somewhat more toxic than MeHgCl. However, no appreciable demethylation of MeHgCl could be detected, indicating similar toxic potencies for both mercury compounds. In highly differentiated cultures, by contrast, MeHgCl exhibited a higher toxic potency than HgCl2. In addition, at 10(-6) M, MeHgCl showed pronounced neuron-specific toxicity. Below the cytotoxic concentrations, distinct glia-specific reactions could be observed with both mercury compounds. An increase in the immunoreactivity for glial fibrillary acidic protein, typical for gliosis, could be observed at concentrations between 10(-9) M and 10(-7) M in immature cultures, and between 10(-8) M and 3 x 10(-5) M in highly differentiated cultures. A conspicuous increase in the number and clustering of GSI-B4 lectin-binding cells, indicating a microglial response, was found at concentrations between 10(-10) M and 10(-7) M. These development-dependent and cell type-specific effects may reflect the pathogenic potential of long-term exposure to subclinical doses of mercury.  相似文献   

19.
20.
Brain-derived neurotrophic factor (BDNF) is widely expressed in the central nervous system, where its function is poorly understood. The aim of this study was to investigate the effects of BDNF on the differentiation of hippocampal nonpyramidal neurons using organotypic slice cultures prepared from postnatal rats. The application of BDNF induced an increase in immunostaining for the microtubule-associated protein (MAP)-2 in non-pyramidal neurons of the stratum oriens. BDNF promotes the elongation of the dendrites of these neurons, as demonstrated by analysis after biocytin labeling. Calbindin-D- and calretinin-containing subgroups of nonpyramidal cells in the stratum oriens were responsive to BDNF but not to nerve growth factor, as shown by an increase in the number of neurons immunostained for these proteins. BDNF also induced an increase in neuropeptide Y immunostaining of stratum oriens neurons. In contrast, BDNF had no effect on parvalbumin immunostaining, despite the fact that these cells express the BDNF receptor trkB. In addition, BDNF increased calretinin immunoreactivity in Cajal-Retzius cells situated around the hippocampal fissure. The Cajal-Retzius neurons persisted in slices beyond the time at which they degenerate in vivo. However, BDNF is not required for the survival of these cells, because they also persisted in slices from BDNF knock-out mice. The present results indicate that BDNF exerts an effect on the morphology of stratum oriens nonpyramidal cells and their calcium-binding protein levels. BDNF also regulates the calretinin content of Cajal-Retzius cells but is not necessary for their survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号