首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
有中学化学参考资料题:0.10 mol/L的NH4Cl和(NH4)2SO4溶液哪个pH值高?这似乎是个中学生可做的简单题目,仔细考虑不是如此.如果简单地认为盐酸和硫酸都是强酸,而硫酸是二元酸,硫酸铵溶液中铵盐浓度为0.20 mol/L,那么NH4Cl溶液pH高,那是不妥的.硫酸是二元酸,第一个氢离子能完全电离,第二个氢离子部分电离,如此考虑情况怎么样呢?是不是答案发生变化?这要通过计算来说明.  相似文献   

2.
The conversion efficiencies reported for Tin(Sn)halide-based perovskite solar cells(PSCs)fall a large gap behind those of lead halide-based PSCs,mainly because of poor film quality of the former.Here we report an efficient strategy based on a simple secondary crystallization growth(SCG)technique to improve film quality for tin halide-based PSCs by applying a series of functional amine chlorides on the perovskite surface.They were discovered to enhance the film crystallinity and suppress the oxidation of Sn2+remarkably,hence reduce trap state density and non-irradiative recombination in the absorber films.Furthermore,the SCG film holds the band levels matching better with carrier transport layers and herein favoring charge extraction at the device interfaces.Consequently,a champion device efficiency of 8.07% was achieved alo ng with significant enhancements in VOC and JSC,in contrast to 5.35% of the control device value.Moreover,the SCG film-based devices also exhibit superior stability comparing with the control one.This work explicitly paves a novel and general strategy for developing high performance lead-free PSCs.  相似文献   

3.
Mixed cation and anion based perovskites solar cells exhibited enhanced stability under outdoor conditions,however,it yielded limited power conversion efficiency when TiO2 and Spiro-OMeTAD were employed as electron and hole transport layer(ETL/HTL)respectively.The inevitable interfacial recombination of charge carriers at ETL/perovskite and perovskite/HTL interface diminished the efficiency in planar(n-i-p)perovskite solar cells.By employing computational approach for uni-dimensional device simulator,the effect of band offset on charge recombination at both interfaces was investigated.We noted that it acquired cliff structure when the conduction band minimum of the ETL was lower than that of the perovskite,and thus maximized interfacial recombination.However,if the conduction band minimum of ETL is higher than perovskite,a spike structure is formed,which improve the performance of solar cell.An optimum value of conduction band offset allows to reach performance of 25.21%,with an open circuit voltage(VOC)of 1231 mV,a current density JSC of 24.57 mA/cm2 and a fill factor of 83.28%.Additionally,we found that beyond the optimum offset value,large spike structure could decrease the performance.With an optimized energy level of Spiro-OMeTAD and the thickness of mixed-perovskite layer performance of 26.56% can be attained.Our results demonstrate a detailed understanding about the energy level tuning between the charge selective layers and perovskite and how the improvement in PV performance can be achieved by adjusting the energy level offset.  相似文献   

4.
Carbon nanotubes(CNTs),as one-dimensional nanomaterials,show great potential in energy conversion and storage due to their efficient electrical conductivity and mass transfer.However,the security risks,time-consuming and high cost of the preparation process hinder its further application.Here,we develop that a negative pressure rather than a following gas environment can promote the generation of cobalt and nitrogen co-doped CNTs(Co/N-CNTs) by using cobalt zeolitic imidazolate framework(ZIF-67) as a precursor,in which the negative pressure plays a key role in adjusting the size of cobalt nanoparticles and stimulating the rearragement of carbon atoms for forming CNTs.Importantly,the obtained Co/N-CNTs,with high content of pyridinic nitrogen and abundant graphitized structure,exhibit superior catalytic activity for oxygen reduction reaction(ORR) with half-wave potential(E1/2) of 0.85 V and durability in terms of the minimum current loss(2%) after the 30,000 s test.Our development provides a new pathway for large-scale and cost-effective preparation of metal-doped CNTs for various applications.  相似文献   

5.
Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.  相似文献   

6.
The pressing demand for high-energy/power lithium-ion batteries requires the deployment of cathode materials with higher capacity and output voltage.Despite more than ten years of research,high-voltage cathode mate-rials,such as high-voltage layered oxides,spinel LiNi0.5Mn1.5O4,and high-voltage polyanionic compounds still cannot be commercially viable due to the instabilities of standard electrolytes,cathode materials,and cathode electrolyte interphases under high-voltage operation.This paper summarizes the recent advances in addressing the surface and interface issues haunting the application of high-voltage cathode materials.The understanding of the limitations and advantages of different modification protocols will direct the future endeavours on advancing high-energy/power lithium-ion batteries.  相似文献   

7.
A generic coarse-grained bead-and-spring model,mapped onto comb-shaped polycarboxylate-based(PCE)superplasticizers,is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions.The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution.The effects of ionic strength,side-chain number,and side-chain length on the conformational behavior of PCEs in solution are explored.Single-chain equilibrium properties,including the radius of gyration,end-to-end distance and persistenee length of the polymer backbone,shape-asphericity parameter,and the mean span dimension,are determined.It is found that with the increase of ionic strength,the equilibrium sizes of the polymers decrease only slightly,and a linear dependenew of the persistence length of backbone on the Debye screening length is found,in good agreement with the theory developed by Dobrynin.Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes(radius of gyration and mean span)of the polymer as a whole,but also the persistence length of the backbone due to excluded volume interactions.  相似文献   

8.
Suppressing the trap-state density and the energy loss via ternary strategy was demonstrated.Favorable vertical phase distribution with donors(acceptors)accumulated(depleted)at the interface of active layer and charge extraction layer can be obtained by introducing appropriate amount of polymer acceptor N2200 into the systems of PBDB-T:IT-M and PBDB-TF:Y6.In addition,N2200 is gradiently distributed in the vertical direction in the ternary blend film.Various measurements were carried out to study the effects of N2200 on the binary systems.It was found that the optimized morphology especially in vertical direction can significantly decrease the trap state density of the binary blend films,which is beneficial for the charge transport and collection.All these features enable an obvious decrease in charge recombination in both PBDB-T:IT-M and PBDB-TF:Y6 based organic solar cells(OSCs),and power conversion efficiencies(PCEs)of 12.5%and 16.42%were obtained for the ternary OSCs,respectively.This work indicates that it is an effective method to suppress the trap state density and thus improve the device performance through ternary strategy.  相似文献   

9.
Laser-structuring is an effective method to promote ion diffusion and improve the performance of lithium-ion battery(LIB)electrodes.In this work,the effects of laser structuring parameters(groove pitch and depth)on the fundamental characteristics of LIB electrode,such as interfacial area,internal resistances,material loss and electrochemical performance,are investigated,LiNi0.5Co0.2Mn0.3O2 cathodes were structured by a femtosecond laser by varying groove depth and pitch,which resulted in a material loss of 5%-14%and an increase of 140%-260%in the in terfacial area between electrode surface and electrolyte.It is shown that the importance of groove depth and pitch on the electrochemical performance(specific capacity and areal discharge capacity)of laser-structured electrode varies with current rates.Groove pitch is more im porta nt at low current rate but groove depth is at high curre nt rate.From the mapping of lithium concentration within the electrodes of varying groove depth and pitch by laser-induced breakdown spectroscopy,it is verified that the groove functions as a diffusion path for lithium ions.The ionic,electronic,and charge transfer resistances measured with symmetric and half cells showed that these internal resistances are differently affected by laser structuring parameters and the changes in porosity,ionic diffusion and electronic pathways.It is demonstrated that the laser structuring parameters for maximum electrode performance and minimum capacity loss should be determined in consideration of the main operating conditions of LIBs.  相似文献   

10.
In order to balance electrochemical kinetics with loading level for achieving efficient energy storage with high areal capacity and good rate capability simultaneously for wearable electronics,herein,2 D meshlike vertical structures(NiCo_2 S_4@Ni(OH)_2) with a high mass loading of 2.17 mg cm-2 and combined merits of both 1 D nanowires and 2 D nanosheets are designed for fabricating flexible hybrid supercapacitors.Particularly,the seamlessly interconnected NiCo_2 S_4 core not only provides high capacity of 287.5 μAh cm-2 but also functions as conductive skeleton for fast electron transport;Ni(OH)_2 sheath occupying the voids in NiCo_2 S_4 meshes contributes extra capacity of 248.4 μAh cm-2;the holey features guarantee rapid ion diffusion along and across NiCO_2 S_4@Ni(OH)_2 meshes.The resultant flexible electrode exhibits a high areal capacity of 535.9 μAh cm-2(246.9 mAh g-1) at 3 mA cm-2 and outstanding rate performance with 84.7% retention at 30 mA cm-2,suggesting efficient utilization of both NiCo_2 S_4 and Ni(OH)_2 with specific capacities approaching to their theoretical values.The flexible solid-state hybrid device based on NiCo_2 S_4@Ni(OH)_2 cathode and Fe_2 O_3 anode delivers a high energy density of 315 μWh cm-2 at the power density of 2.14 mW cm-2 with excellent electrochemical cycling stability.  相似文献   

11.
中国地质大学(武汉)分析化学课程团队采用国家精品在线开放课程作为课程资源、慕课堂作为智慧教学工具、QQ群作为在线讲授和辅导答疑的平台,成功地开展了分析化学课程在线教学实践。实践表明,基于MOOC、慕课堂和QQ群三结合的在线教学形式受到了学生的欢迎和喜爱,学生普遍易于接受,参与积极性高,初显教学效果较好。  相似文献   

12.
During the battle against COVID-19 epidemic, the inorganic chemistry teaching team of Jilin University carried out online teaching of student-centered "inorganic chemistry Ⅱ" course based on "inorganic element chemistry" MOOC with Chaoxing learning platform and QQ group as the auxiliaries. Through the big data support and interactive communication section of Chaoxing learning platform, the learning situation of students in the three learning links of "pre-class, in-class, after-class" was timely tracked and analyzed. Practice showed that online teaching could accomplish teaching and learning effectively.  相似文献   

13.
Based on the massive open online course (MOOC) of physical chemistry from Chinese university MOOCs platform, the authors introduce some initiatives and experiences in the MOOC course construction and the application for undergraduate teaching in Dalian University of Technology. The blended teaching and learning mode made up of "online" and "offline" was put into practice in other universities, and a new "1 + M + N" mode to provincial cross-school sharing has been demonstrated. It was shown that only the enhancement of MOOC teaching be highly valued throughout whole course of teaching, the students' quality and ability could be better cultivated followed by improving teaching quality.  相似文献   

14.
Experimental chemistry is an important public foundation course for the undergraduate student during their first year at Shihezi University. This paper introduces the teaching status and implementation of the experimental chemistry curriculum. Based on the student activities, this paper firstly constructs flipped learning mode of the experimental chemistry, combining the curriculum resource preparation with online and offline teaching. Secondly, the experimental chemistry curriculum takes deep integration of information technology and classroom teaching as an opportunity. Furthermore, the teaching implementation is carried out by the network teaching platform of Shihezi university. Finally, the student's questionnaire displays that it works well in improving the teaching quality.  相似文献   

15.
Zhiping Peng 《大学化学》2020,35(5):184-190
In response to the COVID-19 epidemic prevention, the "polymer chemistry" course teaching team actively explored the "learning-centered" online teaching model. The students were guided to active learning by using the rich contents of Chaoxin online teaching platform and multiple online teaching activities. The basic knowledge points, difficulties and emphases of the teaching were highlighted and the real-time communication and Q&A were achieved in combination with the Tencent course live broadcast and QQ learning group. Following the concept of "students as the main body and teachers as the leading", the online teaching of "polymer chemistry" has effectively aroused the students' interest in learning, cultivated the initiative of autonomous learning, organically integrated the ideological and political education, and achieved a good learning outcome.  相似文献   

16.
In early 2020, because of the outbreak of COVID-19, students are unable to return school on time and normal teaching activities are postponed. In order to implement the requirement of "No suspension of classes" proposed by the Ministry of Education, and to ensure the teaching quality at the same time, the coordination chemistry teaching team from Nanjing University successfully carried out the exploration and practice of online teaching of coordination chemistry by using the MOOC of coordination chemistry on "Wisdom Tree" platform as the curriculum resource, QQ Live or Tencent Meeting as the online teaching tool and Pedagogy Square as the intelligent teaching platform. This teaching form reorganizes and optimizes the available resources online, and implements the student learning process evaluation and the teacher teaching evaluation. The feedback from students and teachers indicates the success of this teaching form.  相似文献   

17.
This paper aims at the implementation of the online courses of chemistry majors in Sichuan University in response to the epidemic, and explores a more effective and reasonable way to organize teaching. Based on the investigation and feedback of teachers and students, this paper points out the difficulties and challenges of online teaching at the present stage:the classroom interaction and discussion are not smooth, the online teaching tools and methods are diversified, and the chemistry laboratory courses are not matched. Therefore, the School of Chemistry of Sichuan University will coordinate the online teaching platform, enhance the classroom interaction, and launch the "chemistry virtual simulation experiment teaching center" to ensure the teaching progress and quality during the epidemic prevention and control.  相似文献   

18.
High-quality online course materials were reconstructed through feedback from undergraduate students and online data analysis regarding constructed learning materials on the Chao Xing Learning Platform. They were used for studying organic chemistry courses online and offline in university for nationalities. This model, based on student-centered teaching, can effectively transform students from passively accepting knowledge to actively learning and internalizing knowledge. This strategy can also enhance the students' learning initiative and the effects of learning, and hopefully be helpful to the universities in multi-ethnic areas in developing fundamental disciplined construction of organic chemistry and other courses.  相似文献   

19.
The crop science of Sichuan Agricultural University is an authorized first-class discipline. As the strategic supporting department for innovative talent cultivation in agriculture and forestry major, we are facing a long-term challenge in reforming the teaching mode for basic course-organic chemistry and cultivating talented students with solid basic knowledge and strong sense of innovation. Herein a thorough survey was performing to establish the executable teaching programs for this course during the "Double-First Class Universities Plan" period. A multidimensional teaching resource library for organic chemistry course was also constructed. The new classroom teaching mode "Interest cultivation-Creative thought development-Autonomous and Cooperative learning", along with a stepwise practice teaching mode "Foundation skills-Integrated application-Innovative trial" was proposed and practiced among thirty-five majors including agriculture, forestry and veterinary, to improve the quality for innovative talent cultivation and support our first-class discipline construction. This research could probably serve as a reference for congeneric agricultural university.  相似文献   

20.
李丹  杨盛  张玲  陈平  曹忠 《大学化学》2019,34(9):70-74
In recent years, SPOC in the campus has been one of the main directions of college curriculum reform. Analytical chemistry is a key component of teaching in chemistry and chemical engineering major. It plays an important role in cultivating students' practical ability, scientific literacy and innovative ability. This paper introduces the reform trials of the analytical chemistry course based on SPOC teaching platform in the chemistry teaching team of Changsha University of Science and Technology. The experience and problems in the teaching process, as well as the consideration on the future construction of analytical chemistry SPOC teaching are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号