首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel heterobimetallic alkynyl-bridged complex, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)Me(5))(dppe)], 1, and its oxidized species, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)Me(5))(dppe)][PF(6)], 2, have been synthesized and their X-ray crystal structures determined. A related vinylidene complex, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond](H)C[double bond]C)Fe(C(5)Me(5))(dppe)][PF(6)], 3, has also been synthesized and characterized. The cyclic voltammogram of 1 shows a quasireversible reduction couple at -1.49 V (vs SCE), a fully reversible oxidation at -0.19 V, and a quasireversible oxidation at +0.88 V. In accord with the electrochemical results, density-functional theory calculations on the hydrogen-substituted model complex Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)H(5))(dHpe) (Cp = C(5)H(5), dHpe = H(2)P[bond](CH(2))(2)[bond]PH(2)) (1-H) show that the LUMO is mainly bipyridine ligand pi* in character while the HOMO is largely iron(II) d orbital in character. The electronic absorption spectrum of 1 shows low-energy absorption at 390 nm with a 420 nm shoulder in CH(2)Cl(2), while that of 2 exhibits less intense low-energy bands at 432 and 474 nm and additional low-energy bands in the NIR at ca. 830, 1389, and 1773 nm. Unlike the related luminescent rhenium(I)-alkynyl complex [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C[bond]H)], 4, complex 1 is found to be nonemissive, and such a phenomenon is attributed to an intramolecular quenching of the emissive d pi(Re) --> pi*(bpy) (3)MLCT state by the low-lying MLCT and LF excited states of the iron moiety. Interestingly, switching on of the luminescence property derived from the d pi(Re) --> pi*(bpy) (3)MLCT state can be demonstrated in the oxidized species 2 and the related vinylidene analogue 3 due to the absence of the quenching pathway.  相似文献   

2.
A series of soluble trinuclear copper(I) and silver(I) complexes containing bicapped diynyl ligands, [M(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CR)(2)]PF(6) (M = Cu, R = Ph, C(6)H(4)-CH(3)-p, C(6)H(4)-OCH(3)-p, (n)C(6)H(13), H; M = Ag, R = Ph, C(6)H(4)-OCH(3)-p), has been synthesized and their electronic, photophysical, and electrochemical properties studied. The X-ray crystal structures of [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CPh)(2)]PF(6) and [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CH)(2)]PF(6) have been determined.  相似文献   

3.
Systematic synthesis routes have been developed for the linear-shaped rhenium(I) oligomers and polymers bridged with bidentate phosphorus ligands, [Re(N--N)(CO)3-PP-{Re(N--N)(CO)2-PP-}(n)Re(N--N)(CO)3](PF6)(n+2) (N--N = diimine, PP = bidentate phosphine, n = 0-18). These were isolated by size exclusion chromatography (SEC) and identified by (1)H NMR, IR, electrospray ionization Fourier transform mass spectrometry, analytical SEC, and elemental analysis. Crystal structures of [Re(bpy)(CO)3-Ph2PC[triple bond]CPPh2-Re(bpy)(CO)3](PF6)2, [Re(bpy)(CO)3-Ph2PC[triple bond]CPPh2-Re(bpy)(CO)2-Ph2PC[triple bond]CPPh2-Re(bpy)(CO)3](PF6)3 and [Re(bpy)(CO)3-Ph2PC2H4PPh2-{Re(bpy)(CO)2Ph2PC2H4PPh2-}(n)Re(bpy)(CO)3](PF6)(n+2) (bpy = 2,2'-bipyridine, n = 1, 2) were obtained, showing that they have interligand pi-pi interaction between the bpy ligand and the phenyl groups on the phosphorus ligand. All of the oligomers and polymers synthesized were emissive at room temperature in solution. For the dimers, broad emission was observed with a maximum at 523-545 nm, from the (3)MLCT excited-state of the tricarbonyl complex unit, [Re(N--N)(CO)3-PP-]. Emission from the longer oligomers and polymers with > or = 3 Re(I) units was observed at wavelengths 50-60 nm longer than those of the corresponding dimers. This fact and the emission decay results clearly show that energy transfer from the edge unit to the interior unit occurs with a rate constant of (0.9 x 10(8))-(2.5 x 10(8)) s(-1). The efficient energy transfer and the smaller exclusive volume of the longer Re(I) polymers indicated intermolecular aggregation for these polymers in an MeCN solution.  相似文献   

4.
The symmetric d(5) trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)] (R = Me, 1 a; Et, 1 b; Ph, 1 c) (dmpe = 1,2-bis(dimethylphosphino)ethane) have been prepared by the reaction of [Mn(dmpe)(2)Br(2)] with two equivalents of the corresponding acetylide LiC triple bond CSiR(3). The reactions of species 1 with [Cp(2)Fe][PF(6)] yield the corresponding d(4) complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)][PF(6)] (R = Me, 2 a; Et, 2 b; Ph, 2 c). These complexes react with NBu(4)F (TBAF) at -10 degrees C to give the desilylated parent acetylide compound [Mn(dmpe)(2)(C triple bond CH)(2)][PF(6)] (6), which is stable only in solution at below 0 degrees C. The asymmetrically substituted trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(C triple bond CH)][PF(6)] (R = Me, 7 a; Et, 7 b) related to 6 have been prepared by the reaction of the vinylidene compounds [Mn(dmpe)(2)(C triple bond CSiR(3))(C=CH(2))] (R = Me, 5 a; Et, 5 b) with two equivalents of [Cp(2)Fe][PF(6)] and one equivalent of quinuclidine. The conversion of [Mn(C(5)H(4)Me)(dmpe)I] with Me(3)SiC triple bond CSnMe(3) and dmpe afforded the trans-iodide-alkynyl d(5) complex [Mn(dmpe)(2)(C triple bond CSiMe(3))I] (9). Complex 9 proved to be unstable with regard to ligand disproportionation reactions and could therefore not be oxidized to a unique Mn(III) product, which prevented its further use in acetylide coupling reactions. Compounds 2 react at room temperature with one equivalent of TBAF to form the mixed-valent species [[Mn(dmpe)(2)(C triple bond CH)](2)(micro-C(4))][PF(6)] (11) by C-C coupling of [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] radicals generated by deprotonation of 6. In a similar way, the mixed-valent complex [[Mn(dmpe)(2)(C triple bond CSiMe(3))](2)(micro-C(4))][PF(6)] [12](+) is obtained by the reaction of 7 a with one equivalent of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene). The relatively long-lived radical intermediate [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] could be trapped as the Mn(I) complex [Mn(dmpe)(2)(C triple bond CH)(triple bond C-CO(2))] (14) by addition of an excess of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to the reaction mixtures of species 2 and TBAF. The neutral dinuclear Mn(II)/Mn(II) compounds [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))] (R = H, 11; R = SiMe(3), 12) are produced by the reduction of [11](+) and [12](+), respectively, with [FeCp(C(6)Me(6))]. [11](+) and [12](+) can also be oxidized with [Cp(2)Fe][PF(6)] to produce the dicationic Mn(III)/Mn(III) species [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))][PF(6)](2) (R = H, [11](2+); R = SiMe(3), [12](2+)). Both redox processes are fully reversible. The dinuclear compounds have been characterized by NMR, IR, UV/Vis, and Raman spectroscopies, CV, and magnetic susceptibilities, as well as elemental analyses. X-ray diffraction studies have been performed on complexes 4 b, 7 b, 9, [12](+), [12](2+), and 14.  相似文献   

5.
Reduction of [M(CO)2(eta-RC[triple bond]CR')Tp']X {Tp' = hydrotris(3,5-dimethylpyrazolyl)borate, M = Mo, X = [PF6]-, R = R' = Ph, C6H4OMe-4 or Me; R = Ph, R' = H; M = W, X = [BF4]-, R = R' = Ph or Me; R = Ph, R' = H} with [Co(eta-C5H5)2] gave paramagnetic [M(CO)2(eta-RC[triple bond]CR')Tp'], characterised by IR and ESR spectroscopy. X-Ray structural studies on the redox pair [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'] and [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'][PF6] showed that oxidation is accompanied by a lengthening of the C[triple bond]C bond and shortening of the Mo-C(alkyne) bonds, consistent with removal of an electron from an orbital antibonding with respect to the Mo-alkyne bond, and with conversion of the alkyne from a three- to a four-electron donor. Reduction of [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'][PF6] with [Co(eta-C5H5)2] in CH2Cl2 gives [MoCl(CO)(eta-MeC[triple bond]CMe)Tp'], via nitrile substitution in [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'], whereas a similar reaction with [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']+ (M = Mo or W) gives the phosphite-containing radicals [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']. ESR spectroscopic studies and DFT calculations on [M(CO)L(eta-MeC[triple bond]CMe)Tp'] {M = Mo or W, L = CO or P(OCH2)3CEt} show the SOMO of the neutral d5 species (the LUMO of the d4 cations) to be largely d(yz) in character although much more delocalised in the W complexes. Non-coincidence effects between the g and metal hyperfine matrices in the Mo spectra indicate hybridisation of the metal d-orbitals in the SOMO, consistent with a rotation of the coordinated alkyne about the M-C2 axis.  相似文献   

6.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

7.
The reactivity of [HMCo3(CO)12] and [Et4N][MCo3(CO)12] (M = Fe, Ru) toward phosphine selenides such as Ph3PSe, Ph2P(Se)CH2PPh2, Ph2(2-C5H4N)PSe, Ph2(2-C4H3S)PSe, and Ph2[(2-C5H4N)(2-C4H2S)]PSe has been studied with the aim to obtain new selenido-carbonyl bimetallic clusters. The reactions of the hydrido clusters give two main classes of products: (i) triangular clusters with a mu3-Se capping ligand of the type [MCo2(mu3-Se)(CO)(9-x)L(y)] resulting from the selenium transfer (x = y = 1, 2, with L = monodentate ligand; x = 2, 4, and y = 1, 2, with L = bidentate ligand) (M = Fe, Ru) and (ii) tetranuclear clusters of the type [HMCo3(CO)12xL(y)] obtained by simple substitution of axial, Co-bound carbonyl groups by the deselenized phosphine ligand. The crystal structures of [HRuCo3(CO)7(mu-CO)3(mu-dppy)] (1), [MCo2(mu3-Se)(CO)7(mu-dppy)] (M = Fe (16) or Ru (2)), and [RuCo2(mu3-Se)(CO)7(mu-dppm)] (12) are reported [dppy = Ph2(2-C5H4N)P, dppm = Ph2PCH2PPh2]. Clusters 2, 12, and 16 are the first examples of trinuclear bimetallic selenido clusters substituted by phosphines. Their core consists of metal triangles capped by a mu3-selenium atom with the bidentate ligand bridging two metals in equatorial positions. The core of cluster 1 consists of a RuCo3 tetrahedron, each Co-Co bond being bridged by a carbonyl group and one further bridged by a dppy ligand. The coordination of dppy in a pseudoaxial position causes the migration of the hydride ligand to the Ru(mu-H)Co edge. In contrast to the reactions of the hydrido clusters, those with the anionic clusters [MCo3(CO)12]- do not lead to Se transfer from phosphorus to the cluster but only to CO substitution by the deselenized phosphine.  相似文献   

8.
The triply bonded dirhenium(II) synthons Re(2)X(4)(mu-dppm)(2) (X = Cl, Br; dppm = Ph(2)PCH(2)PPh(2)) react with acetylene at room temperature in CH(2)Cl(2) and acetone to afford the bis(acetylene) complexes Re(2)X(4)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH) (X = Cl (3), Br(4)). Compound 3 has been derivatized by reaction with RNC ligands in the presence of TlPF(6) to give unsymmetrical complexes of the type [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH)(CNR)]PF(6) (R = Xyl (5), Mes (6), t-Bu (7)), in which the RCN ligand has displaced the chloride ligand cis to the eta(2)-HCCH ligand. The reaction of 3 with an additional 1 equiv of acetylene in the presence of TlPF(6) gives the symmetrical all-cis isomer of [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH)(2)]PF(6) (8). The two terminal eta(2)-HCCH ligands in 8 are very labile and can be displaced by CO and XylNC to give the complexes [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(L)(2)]Y (L = CO when Y = PF(6) (9); L = CO when Y = (PF(6))(0.5)/(H(2)PO(4))(0.5) (10); L = XylNC when Y = PF(6) (11)). These substitution reactions proceed with retention of the all-cis stereochemistry. Single-crystal X-ray structure determinations have been carried out on complexes 3, 5, 8, 10, and 11. In no instance have we found that the acetylene ligands undergo reductive coupling reactions.  相似文献   

9.
Wei QH  Yin GQ  Zhang LY  Chen ZN 《Inorganic chemistry》2006,45(25):10371-10377
Heteroheptanuclear ReM6 (M = Cu 2, Ag 3) complexes of 5,5-diethynyl-2,2'-bipyridine were prepared by the reaction of [M2(mu-dppm)2(MeCN)2]2+ (dppm = bis(diphenylphosphino)methane) with the precursor compound Re(Me3SiC[triple bond]CbpyC[triple bond]CSiMe3)(CO)3Cl in the presence of potassium fluoride by fluoride-catalyzed desilylation. When [Cu2(mu-dppm)2(MeCN)2]2+ reacts directly with Me3SiC[triple bond]CbpyC[triple bond]CSiMe3, a binuclear CuI complex [Cu2(mu-dppm)2(SiMe3C[triple bond]CbpyC[triple bond]CSiMe3)2]2+ (4) was isolated. Further addition of [Cu2(mu-dppm)2(MeCN)2]2+ into a THF-MeOH (3:1, v/v) solution of 4 in the presence of potassium fluoride induced isolation of a tetradecanuclear CuI14 complex [Cu14(mu-dppm)14(C[triple bond]CbpyC[triple bond]C)2]10+, which is composed of a binuclear Cu2(mu-dppm)2 and four triangular trinuclear Cu3 units. Both heteroheptanuclear ReIMI6 and tetradecanuclear CuI14 complexes display luminescence in both solid states and dichloromethane solutions at room temperature with emissive lifetimes in the range of microseconds. The dual emissive feature for the ReM6 and CuI14 complexes is ascribed tentatively to originate from both MLCT [d(Re/Cu) -->pi* (bpy)] and LMCT (acetylide --> M3) transitions. .  相似文献   

10.
The d4 halide complexes [MX(CO)(eta-RC[triple bond, length as m-dash]CR)Tp'] {X=F, Cl, Br or I; R=Me or Ph; M=Mo or W; Tp'=hydrotris(3,5-dimethylpyrazolyl)borate} undergo one-electron oxidation to the d3 monocations [MX(CO)(eta-RC[triple bond, length as m-dash]CR)Tp']+, isolable for M=W, R=Me. X-Ray structural studies on the redox pairs [WX(CO)(eta-MeC[triple bond, length as m-dash]CMe)Tp']z (X=Cl and Br, z=0 and 1), the ESR spectra of the cations [WX(CO)(eta-RC[triple bond, length as m-dash]CR)Tp']+ (X=F, Cl, Br or I; R=Me or Ph), and DFT calculations on [WX(CO)(eta-MeC[triple bond, length as m-dash]CMe)Tp']z (X=F, Cl, Br and I; z=0 and 1) are consistent with electron removal from a HOMO (of the d4 complexes) which is pi-antibonding with respect to the W-X bond, pi-bonding with respect to the W-C(O) bond, and delta-bonding with respect to the W-Calkyne bonds. The dependence of both oxidation potential and nu(CO) for [MX(CO)(eta-RC[triple bond, length as m-dash]CR)Tp'] shows an inverse halide order which is consistent with an ionic component to the M-X bond; the small size of fluorine and its closeness to the metal centre leads to the highest energy HOMO and the lowest oxidation potential. In the cations [MX(CO)(eta-RC[triple bond, length as m-dash]CR)Tp']+ electronegativity effects become more important, leading to a conventional order for Cl, Br and I. However, high M-F pi-donation is still facilitated by the short M-F distance.  相似文献   

11.
The new hydride complexes [Mo2Cp2(mu-H)(mu-PHR)(CO)4] having bulky substituents (R = 2,4,6-C(6)H2tBu3= Mes*, R = 2,4,6-C6H2Me3= Mes) have been prepared in good yield by addition of Li[PHR] to the triply bonded [Mo2Cp2(CO)4] and further protonation of the resulting anionic phosphide complex [Mo2Cp2(mu-PHR)(CO)4]-. Protonation of the Mes* compound with either [H(OEt2)2][B{3,5-C6H3(CF3)2}4] or HBF4.OEt2 gives the cationic phosphinidene complex [Mo2Cp2(mu-H)(mu-PMes*)(CO)4]+ in high yield. In contrast, protonation of the analogous hydride compounds with Mes or Cy substituents on phosphorus give the corresponding unsaturated tetracarbonyls [Mo2Cp2(mu-PHR)(CO)4]+, which are unstable at room temperature and display a cis geometry. Decomposition of the latter give the electron-precise pentacarbonyls [Mo2Cp2(mu-PHR)(mu-CO)(CO)4]+, also displaying a cis arrangement of the metal fragments. In the presence of BF4- as external anion, fluoride abstraction competes with carbonylation to yield the neutral fluorophosphide hydrides [Mo2Cp2(mu-H)(mu-PFR)(CO)4]. Similar results were obtained in the protonation reactions of the hydride compounds having a Ph substituent on phosphorus. In that case, using HCl as protonation reagent gave the chloro-complex [Mo2ClCp2(mu-PHPh)(CO)4] in good yield. The structures and dynamic behaviour of the new compounds are analyzed on the basis of solution IR and 1H, 31P, 19F and 13C NMR data as well as the X-ray studies carried out on [Mo2Cp2(mu-H)(mu-PHMes)(CO)4](cis isomer), [Mo2Cp2(mu-H)(mu-PFMes)(CO)4](trans isomer), [Mo2Cp2(mu-PHCy)(mu-CO)(CO)4](BF4) and [Mo2ClCp2(mu-PHPh)(CO)4].  相似文献   

12.
The oxidative addition of one equivalent of [Cp2V] (4) to the tetrayne ligand tBuC triple bond CC triple bond CC triple bond CC triple bond CtBu (5) gives the monometallic complex [Cp2V(3-4eta-tBuC triple bond C-C2-C triple bond CC triple bond CtBu)] (7). Compound 7 reacts further with a second equivalent of [Cp2V] to give the dimetallic complex [(Cp2V)2(1-2eta:7-8eta-tBuC2-C triple bond CC triple bond C-C2tBu)] (8), which involves a shift of the first coordinated [Cp2V] unit from the internal C3-C4 to the external C1-C2 positions on the alkynyl ligand. Compound 8 is also directly obtained by the addition of two equivalents of [Cp2V] to 5. Reversibly, reaction of 8 with 5 leads to 7. This exchange reaction between 7 and 8 by adding successively 5 and 4 has been monitored by EPR spectroscopy. By contrast, the oxidative addition of one or two equivalents of [Cp2V] to the tetrayne ligand PhC triple bond CC triple bond CC triple bond CC triple bond CPh (6) gives the homodimetallic complex [(Cp2V)2(1-2eta:7-8eta-PhC2-CC triple bond CC triple bond C-C2-Ph)] (9). Both monometallic and dimetallic complexes 7, 8, and 9 have been characterized by X-ray diffraction. Magnetic moment measurements for 8 and 9 from 300 to 4 K indicated a weak antiferromagnetic J exchange coupling of -12.5 and -4.1 cm(-1), respectively.  相似文献   

13.
Unusual AuI-AgI heterometallic complexes [Au5Ag8(mu-dppm)4{1,2,3-C6(C6H4R-4)3}(CCC6H4R-4)7]3+ (R = H 1, CH3 2, But 3) were isolated by reactions of polymeric silver arylacetylides (AgCCC6H4R-4)n with binuclear gold component [Au2(mu-dppm)2(MeCN)2]2+ (dppm = bis(diphenylphosphino)methane), in which cyclotrimerization of arylacetylide -CCC6H4R-4 affords trianion {1,2,3-C6(C6H4R-4)3}3- with an unprecedented mu5-bonding mode. Compounds 1(SbF6)3-3(SbF6)3 exhibit intense photoluminescence derived from an MLCT (Au5Ag8 --> CCC6H4R-4) transition, mixed with a metal cluster-centered excited states.  相似文献   

14.
The synthesis and reactivity of the thiophyne and furyne clusters [Ru3(CO)7(mu-dppm)(mu3-eta2-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, O) is reported. Addition of P(C4H3E)3 to [Ru3(CO)10(mu-dppm)] (1) at room temperature in the presence of Me3NO gives simple substitution products [Ru3(CO)9(mu-dppm)(P(C4H3E)3)] (E = S, 2; E = O, 3). Mild thermolysis in the presence of further Me3NO affords the thiophyne and furyne complexes [Ru3(CO)7(mu-dppm)(mu3-eta2-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, 4; E = O, 6) resulting from both carbon-hydrogen and carbon-phosphorus bond activation. In each the C4H2E (E = S, O) ligand donates 4-electrons to the cluster and the rings are tilted with respect to the mu-dppm and the phosphido-bridged open triruthenium unit. Heating 4 at 80 degrees C leads to the formation of the ring-opened cluster [Ru3(CO)5(mu-CO)(mu-dppm)(mu3-eta3-SC4H3)(mu-P(C4H3S)2)] (5) resulting from carbon-sulfur bond scission and carbon-hydrogen bond formation and containing a ring-opened mu3-eta3-1-thia-1,3-butadiene ligand. In contrast, a similar thermolysis of 3 affords the phosphinidene cluster [Ru3(CO)7(mu-dppm)(mu3-eta2-C4H2O)(mu3-P(C4H3O))] (7) resulting from a second phosphorus-carbon bond cleavage and (presumably) elimination of furan. Treatment of 4 and 6 with PPh3 affords the simple phosphine-substituted products [Ru3(CO)6(PPh3)(mu-dppm)(mu3-eta2-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, 8; E = O, 9). Both thiophyne and furyne clusters 4 and 6 readily react with hydrogen bromide to give [Ru3(CO)6Br(mu-Br)(mu-dppm)(mu3-eta2-eta1-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, 10; E = O, 11) containing both terminal and bridging bromides. Here the alkynes bind in a highly unsymmetrical manner with one carbon acting as a bridging alkylidene and the second as a terminally bonded Fisher carbene. As far as we are aware, this binding mode has only previously been noted in ynamine complexes or those with metals in different oxidation states. The crystal structures of seven of these new triruthenium clusters have been carried out, allowing a detailed analysis of the relative orientations of coordinated ligands.  相似文献   

15.
The previously reported hexanuclear cluster [Pt(6)(mu-PtBu(2))(4)(CO)(6)](2+)[Y](2) (1-Y(2): Y=CF(3)SO(3) (-)) contains a central Pt(4) tetrahedron bridged at each of the opposite edges by another platinum atom; in turn, four phosphido ligands bridge the four Pt-Pt bonds not involved in the tetrahedron, and, finally, one carbonyl ligand is terminally bonded to each metal centre. Interestingly, the two outer carbonyls are more easily substituted or attacked by nucleophiles than the inner four, which are bonded to the tetrahedron vertices. In fact, the reaction of 1-Y(2) with 1 equiv of [nBu(4)N]Cl or with an excess of halide salts gives the monochloride [Pt(6)(mu-PtBu(2))(4)(CO)(5)Cl](+)[Y], 2-Y, or the neutral dihalide derivatives [Pt(6)(mu-PtBu(2))(4)(CO)(4)X(2)] (3: X=Cl; 4: X=Br; 5: X=I). Moreover, the useful unsymmetrically substituted [Pt(6)(mu-PtBu(2))(4)(CO)(4)ICl] (6) was obtained by reacting equimolar amounts of 2 and [nBu(4)N]I, and the dicationic derivatives [Pt(6)(mu-PtBu(2))(4)(CO)(4)L(2)](2+)[Y](2) (7-Y(2): L=(13)CO; 8-Y(2): L=CNtBu; 9-Y(2): L=PMe(3)) were obtained by reaction of an excess of the ligand L with 1-Y(2). Weaker nitrogen ligands were introduced by dissolving the dichloride 3 in acetonitrile or pyridyne in the presence of TlPF(6) to afford [Pt(6)(mu-PtBu(2))(4) (CO)(4)L(2)](2+)[Z](2) (Z=PF(6) (-), 10-Z(2): L=MeCN; 11-Z(2): L=Py). The "apical" carbonyls in 1-Y(2) are also prone to nucleophilic addition (Nu(-): H(-), MeO(-)) affording the acyl derivatives [Pt(6)(mu-PtBu(2))(4)(CO)(4)(CONu)(2)] (12: Nu=H; 13: Nu=OMe). Complex 12 is slowly converted into the dihydride [Pt(6)(mu-PtBu(2))(4)(CO)(4)H(2)] (14), which was more cleanly prepared by reacting 3 with NaBH(4). In a unique case we observed a reaction involving also the inner carbonyls of complex 1, that is, in the reaction with a large excess of the isocyanides R-NC, which form the corresponding persubstituted derivatives [Pt(6)(mu-tPBu(2))(4)(CN-R)(6)](2+)[Y](2), (15-Y(2): R=tBu; 16-Y(2) (2-): R=-C(6)H(4)-4-C triple bond CH). All complexes were characterized by microanalysis, IR and multinuclear NMR spectroscopy. The crystal and molecular structures of complexes 3, 5, 6 and 9-Y(2) are also reported. From the redox viewpoint, all complexes display two reversible one-electron reduction steps, the location of which depends both upon the electronic effects of the substituents, and the overall charge of the original complex.  相似文献   

16.
Xu QF  Chen JX  Zhang WH  Ren ZG  Li HX  Zhang Y  Lang JP 《Inorganic chemistry》2006,45(10):4055-4064
Approaches to the assembly of (eta5-C5Me5)WS3Cu3-based supramolecular compounds from two preformed incomplete cubane-like clusters [PPh4][(eta5-C5Me5)WS3(CuX)3] (X = CN, 1a; X = Br, 1b) have been investigated. Treatment of 1a with LiBr/1,4-pyrazine (1,4-pyz), pyridine (py), LiCl/py, or 4,4'-bipyridine (4,4'-bipy) and treatment of 1b with 4,4'-bipy gave rise to a new set of W/Cu/S cluster-based compounds, [Li[((eta5-C5Me5)WS3Cu3(mu3-Br))2(mu-CN)3].C6H6]infinity (2), [(eta5-C5Me5)WS3Cu3(mu-CN)2(py)]infinity (3), [[PPh4][(eta5-C5Me5)WS3Cu3(mu3-Cl)(mu-CN)(CN)].py]infinity (4), [PPh4]2[(eta5-C5Me5)WS3Cu3(CN)2]2(mu-CN)2.(4,4'-bipy) (5), and [[(eta5-C5Me5)WS3Cu3Br(mu-Br)(4,4'-bipy)].Et2O]infinity (6). The structures of 2-6 have been characterized by elemental analysis, IR spectra, and single-crystal X-ray crystallography. Compound 2 displays a 1D ladder-shaped chain structure built of square-like [[(eta5-C5Me5)WS3Cu3(mu3-Br)(mu-CN)]4](mu-CN)2(2-) anions via two pairs of Cu-mu-CN-Cu bridges. Compound 3 consists of a single 3D diamond-like network in which each (eta5-C5Me5)WS3Cu3 unit, serving as a tetrahedral node, interconnects with four other nearby units through Cu-mu-CN-Cu bridges. Compound 4 contains a 1D zigzag chain array made of cubane-like [(eta5-C5Me5)WS3Cu3(mu3-Cl)(mu-CN)(CN)]- anions linked by a couple of Cu-mu-CN-Cu bridges. Compound 5 contains a dimeric structure in which the two incomplete cubane-like [(eta5-C5Me5)WS3(CuCN)2(mu-CN)]- anions are strongly held together via a pair of Cu-mu-CN-Cu bridges. Compound 6 contains a 2D brick-wall layer structure in which dimers of [(eta5-C5Me5)WS3Cu3Br(4,4'-bipy)]2 are interconnected via four Cu-mu-Br-Cu bridges. The successful construction of (eta5-C5Me5)WS3Cu3-based supramolecular compounds 2-6 from the geometry-fixed clusters 1a and 1b may expand the scope of the rational design and construction of cluster-based supramolecular assemblies.  相似文献   

17.
A series of halogenated, partially fluorinated tolans of general formula p-X-C6H4-C[triple bond]C-C6F5[X=I (1), Br (2), Cl (3), F (4)] and p-X-C6F4-C[triple bond]C-C6H5[X=I (5), Br (6)] have been prepared via palladium-catalysed Sonogashira cross-coupling, or for X=Cl (7), by nucleophilic aromatic substitution reactions. The single-crystal X-ray structures of 1-3 and 5-6 have been determined. The structures reveal that the molecular packing is characterized by either arene-perfluoroarene interactions (3), or halogen-halogen interactions (isomorphous 1 and 2), or neither (isomorphous 5 and 6). The structure of represents the first fully determined crystal structure of a compound that contains a halogen atom other than fluorine, in which arene-perfluoroarene interactions are present.  相似文献   

18.
The reaction of [PPN](2)[Re(6)C(CO)(19)] with Mo(CO)(6) and Ru(3)(CO)(12) under sunlamp irradiation provided the new mixed-metal clusters [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] and [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)], which were isolated in yields of 85% and 61%, respectively. The compound [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] crystallizes in the monoclinic space group P2(1)/c with a = 20.190 (7) ?, b = 16.489 (7) ?, c = 27.778 (7) ?, beta = 101.48 (2) degrees, and Z = 4 (at T = -75 degrees C). The cluster anion is composed of a Re(6)C octahedral core with a face capped by a Mo(CO)(4) fragment. There are three terminal carbonyl ligands coordinated to each rhenium atom. The four carbonyl ligands on the molybdenum center are essentially terminal, with one pair of carbonyl ligands (C72-O72 and C74-O74) subtending a relatively large angle at molybdenum (C72-Mo-C74 = 147.2(9) degrees ), whereas the remaining pair of carbonyl ligands (C71-O71 and C73-O73) subtend a much smaller angle (C71-Mo-C73 = 100.5(9) degrees ). The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows signals for four sets of carbonyl ligands at -40 degrees C, consistent with the solid state structure, but the carbonyl ligands undergo complete scrambling at ambient temperature. The (13)C NMR spectrum of (13)CO-enriched [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] at 20 degrees C is consistent with the expected structure of an octahedral Re(6)C(CO)(18) core capped by a Ru(CO)(3) fragment. The visible spectrum of [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)] shows a broad, strong band at 670 nm (epsilon = 8100), whereas all of the absorptions of [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)] are at higher energy. An irreversible oxidation wave with E(p) at 0.34 V is observed for [PPN](2)[Re(6)C(CO)(18)Mo(CO)(4)], whereas two quasi-reversible oxidation waves with E(1/2) values of 0.21 and 0.61 V (vs Ag/AgCl) are observed for [PPN](2)[Re(6)C(CO)(18)Ru(CO)(3)]. The molybdenum cap in [Re(6)C(CO)(18)Mo(CO(4))](2-) is cleaved by heating in donor solvents, and by treatment with H(2), to give largely [H(2)Re(6)C(CO)(18)](2-). In contrast, [Re(6)C(CO)(18)Ru(CO)(3)](2-) shows no tendency to react under similar conditions.  相似文献   

19.
Air-oxidation of Cp'(4)Fe(4)(HCCH)(2) (Cp' = Cp (1a), C(5)H(4)Me (1b)) in an NH(4)PF(6)/CH(3)CN solution afforded the one-electron oxidized clusters [Cp'(4)Fe(4)(HCCH)(2)](PF(6)). Oxidation of 1a with excess AgBF(4) in THF afforded [1a](BF(4)), while that of 1b with excess AgBF(4) gave [1b](BF(4))(2). The X-ray crystal structure analysis of [1a](BF(4)) revealed that the monocationic cluster retains the butterfly-type Fe(4)(mu4-eta(2):eta(2):eta(1):eta(1)-HCCH)(2) framework similar to that of the neutral cluster. The average Fe-Fe bond length is shorter by 0.029 A than that in the neutral cluster. Electrochemical oxidation of 1a and 1b in 0.1 M NH(4)PF(6)/CH(3)CN solution at +0.30 and +0.25 V versus Ag/10 mM AgNO(3), respectively, afforded the two-electron oxidized clusters [1a](PF(6))(2) and [1b](PF(6))(2). The X-ray crystal structure analysis for [1b](BF(4))(2) shows that the butterfly-type cluster core is retained but shrinks more of those of neutral and monocationic clusters. The four Fe-Fe bonds in [1b](BF(4))(2) are unequivalent: one Fe-Fe bond (2.397(1) A) is apparently shorter than the others (2.439(2)-2.461(2) A).  相似文献   

20.
The alkynyl(vinylidene)rhodium(I) complexes trans-[Rh(C[triple bond, length as m-dash]CR)(=C=CHR)(PiPr3)2] 2, 5, 6 react with CO by migratory insertion to give stereoselectively the butenynyl compounds trans-[Rh{eta1-(Z)-C(=CHR)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-7-9, of which (Z)-7 (R=Ph) and (Z)-8 (R=tBu) rearrange upon heating or UV irradiation to the (E) isomers. Similarly, trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CPh}(CO)(PiPr3)2] 12 and trans-[Rh{eta1-(Z)-C(=CHCO2Me)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-15, (Z)-16 have been prepared. At room temperature, the corresponding "non-substituted" derivative trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CH}(CO)(PiPr3)2] 18 is in equilibrium with the butatrienyl isomer trans-[Rh(eta1-CH=]C=C=CH2)(CO)(PiPr3)2] 19 that rearranges photochemically to the alkynyl complex trans-[Rh(C[triple bond, length as m-dash]CCH=CH2)(CO)(PiPr3)2] 20. Reactions of (Z)-7, (E)-7, (Z)-8 and (E)-8 with carboxylic acids R'CO2H (R'=CH3, CF3) yield either the butenyne (Z)- and/or (E)-RC[triple bond, length as m-dash]CCH=CHR or a mixture of the butenyne and the isomeric butatriene, the ratio of which depends on both R and R'. Treatment of 2 (R=Ph) with HCl at -40 degrees C affords five-coordinate [RhCl(C[triple bond, length as m-dash]CPh){(Z)-CH=CHPh}(PiPr3)2] 23, which at room temperature reacts by C-C coupling to give trans-[RhCl{eta2-(Z)-PhC[triple bond, length as m-dash]CCH=CHPh}(PiPr3)2](Z)-21. The related compound trans-[RhCl(eta2-HC[triple bond, length as m-dash]CCH=CH2)(PiPr3)2] 27, prepared from trans-[Rh(C[triple bond, length as m-dash]CH)(=C=CH2)(PiPr3)2] 17 and HCl, rearranges to the vinylvinylidene isomer trans-[RhCl(=C=CHCH=CH2)(PiPr3)2] 28. While stepwise reaction of 2with CF3CO2H yields, via alkynyl(vinyl)rhodium(III) intermediates (Z)-29 and (E)-29, the alkyne complexes trans-[Rh(kappa1-O2CCF3)(eta2-PhC[triple bond, length as m-dash]CCH=CHPh)(PiPr3)2](Z)-30 and (E)-30, from 2 and CH3CO2H the acetato derivative [Rh(kappa2-O2CCH3)(PiPr3)2] 33 and (Z)-PhC[triple bond, length as m-dash]CCH=]CHPh are obtained. From 6 (R=CO2Me) and HCl or HC[triple bond, length as m-dash]CCO2Me the chelate complexes [RhX(C[triple bond, length as m-dash]CCO2Me){kappa2(C,O)-CH=CHC(OMe)=O}(PiPr3)2] 34 (X=Cl) and 35 (X=C[triple bond, length as m-dash]CCO2Me) have been prepared. In contrast to the reactions of [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE)(CH=CHE)(PiPr3)2] 37(E=CO2Me) with chloride sources which give, via intramolecular C-C coupling, four-coordinate trans-[RhCl{eta2-(E)-EC[triple bond, length as m-dash]CCH=CHE}(PiPr3)2](E)-36, treatment of 37with HC[triple bond, length as m-dash]CE affords, via insertion of the alkyne into the rhodium-vinyl bond, six-coordinate [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE){eta1-(E,E)-C(=CHE)CH=CHE}(PiPr3)2] 38. The latter reacts with MgCl2 to yield trans-[RhCl{eta2-(E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE}(PiPr3)2] 39, which, in the presence of CO, generates the substituted hexadienyne (E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE 40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号