首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption behavior of various heavy metals on mustard oil cake (MOC) was studied. The maximum adsorption of Cu(II) was observed followed by Zn(II), Cr(VI), Mn(II), Cd(II), Ni(II) and Pb(II). The adsorption of Cu(II) was found to be dependent on initial concentration of solution, pH, adsorbent dose, temperature and contact time. The adsorption followed pseudo-first-order and second-order kinetics but pseudo-second-order kinetic model was better obeyed since experimental data agreed well with theoretical data. Thermodynamic parameters were also evaluated. The adsorption process was found to be endothermic and spontaneous in nature. Attempts were also made to desorb Cu(II) from the adsorbent and regeneration of the spent adsorbent. The breakthrough and exhaustive capacities were found to be 5 and 10 mg g(-1), respectively.  相似文献   

2.
Granite sand was used to adsorb anionic surfactant, sodium dodecyl sulfate (SDS) from water at natural pH 6.25. The effect of adsorbent size, pH, temperature and amount of adsorbent has been examined. The results indicate that the Langmuir model provides the best correlation of experimental data. Thermodynamic parameters like entropy, enthalpy and free energy of adsorption were evaluated. Decreasing the temperature accelerates the adsorption of SDS onto sand surface. The kinetic data were analyzed by using pseudo-first order Lagergren equation. Adsorption of SDS was exothermic and dominated by physisorption with activation energy (Ea) 33.65 kJ mol(-1). In addition, regeneration of granite sand by washing with Fenton likes reagent was examined. The results suggested that granite sand is suitable as a sorbent material for recovery and adsorption of SDS from aqueous solutions in view of its effectiveness and cheaper cost.  相似文献   

3.
Oxygen functionalized carbon nanocompositse (O-I@C) based on glucose and illite were obtained through mild hydrothermal process and surface oxidation. The surface properties of the prepared O-I@C were analyzed by Boehm titration, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and Specific surface area (BET). The results showed that the surfaces of the prepared O-I@C nanocomposites were functionalized with abundant oxygen-containing functional groups (OFGs). The functionalized O-I@C nanocomposites were proven to be effective adsorbents for fast removal of congo red (CR) and methylene blue (MB) from aqueous solution within 10 min. It is demonstrated that the initial pH of dyes solution has an important influence on the adsorption process of both CR and MB, indicating that the OFGs created on the surfaces of the materials are responsible for the promoted adsorption ability. Furthermore, it is also proved that the adsorption isotherms of CR and MB obey the Langmuir model, with the maximum adsorption capacities of 238.40 mg/g and 215.28 mg/g, respectively. In addition, the used materials could be regenerated by washing with NaOH solution and reused at least four times, which exhibits potential applications as efficient and easily reusable adsorbents for the rapid removal of anionic dye CR and cationic dye MB from wastewater.  相似文献   

4.
The adsorption of Pb(II) and Cd(II) metal ions on mustard husk has been found to be concentration, pH, contact time, adsorbent dose and temperature dependent. The adsorption parameters were determined using Langmuir and Freundlich isotherm models. The adsorption isotherm studies clearly indicated that the adsorptive behavior of Pb(II) and Cd(II) metal ions on mustard husk satisfies not only the Langmuir assumptions but also the Freundlich assumptions, i.e. multilayer formation on the surface of the adsorbent with an exponential distribution of site energy. Ion exchange and surface complexation are the major adsorption mechanisms involved.

The applicability of Lagergren kinetic model has also been investigated. Thermodynamic constant (kad), free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) were calculated for predicting the nature of adsorption. The results indicate the potential application of this method for effluent treatment in industries and also provide strong evidence to support the adsorption mechanism proposed.  相似文献   


5.
In this study, the aminopropyl-silica (Sil-NH(2)) was used to adsorb a yellow- and a red-dye from aqueous solutions at pH 4.0. New data concerning the influence of the anionic surfactant SDS on the adsorption data was obtained. All interactions occurred below the cmc values of the Sil-NH(2)/anionic dyes aggregates. A rise of temperature accelerates the mass transfer of the red-dye into the Sil-NH(2) surface, while the yellow-dye adsorption decreased. The presence of SDS increased the adsorption quantities in relation to the temperature increasing. The exception is observed for the yellow-dye adsorption at 55 degrees C. So, it is suggested that the chemical structure of the dye, as well as the presence and position of its sulfonate groups are important factors that affect the anionic dye/SDS aggregations and the adsorption quantities. The solid-phase interactions of dyes data present good fittings to the Avrami kinetic model, where from two to four kinetic regions were found, taking into account the variations of the contact time and temperature. The presence of several values of Avrami constants, namely k(Av) and n, has been attributed to the occupation of both the surface and the internal adsorption sites of the aminopropyl-silica.  相似文献   

6.
In an investigation of the plasma cleaning of metals and the plasma etching of carbon, a mass spectrometer was used as a sensitive process monitor. CO2 produced by the plasma oxidation of carbon films or of organic contamination and occluded carbon at the surfaces of metals proved to be the most suitable gas to monitor. A good correlation was obtained between the measured etch rate of carbon and the resulting CO2 partial pressure monitored continuously with the mass spectrometer.The rate of etching of carbon in an oxygen-argon plasma at 0.1 Torr was high when the carbon was at cathode potential and low when it was electrically isolated in the plasma, thus confirming the findings of previous workers and indicating the importance of ion bombardment in the etching process. Superficial organic contamination on the surfaces of the metals aluminium and copper and of the alloy Inconel 625 was quickly removed by the oxygen-argon plasma when the metal was electrically isolated and also when it was at cathode potential. Occluded carbon (or carbides) at or near the surfaces of the metals was removed slowly and only when the metal was at cathode potential, thus illustrating again the importance of ion bombardment.  相似文献   

7.
Mao  Jinshui  Liu  Juan  Zhang  Zhenyu  Zeng  Liqiang  Li  Xiaocheng  Ren  Sili 《Journal of Materials Science》2021,56(32):18233-18247
Journal of Materials Science - A novel layered metal sulfide (K1.87Zn0.13Sn6.4S12.67, KZTS) with high adsorption capacity was synthesized by hydrothermal method for selective removal of Pb2+ ions...  相似文献   

8.
A variety of inorganic contaminants may form toxic oxyanions in aqueous systems which pose significant hazard to human health and the ecosystem. In order to remove the oxyanions from aqueous stream effectively, surfactant-modified powdered activated carbon (SM-PAC) combined with ultrafiltration (UF) was proposed in this study. As the cationic surfactant, cetylpyridinium chloride (CPC), adsorbs on the surface of PAC, the zeta potential of PAC increases to +40 mV. Oxyanions such as chromate, ferricyanide and arsenate bind on SM-PAC by electrostatic interaction, then the contaminants bound with SM-PAC can be separated by UF membrane. 0.3 mM of chromate and ferricyanide are removed completely with 4.0 g/L of SM-PAC. In case of arsenate, the removal efficiency was lower than chromate and ferricyanide. It is considered that the competition occurs among anionic pollutants on the limited binding sites of SM-PAC and lower valence of arsenate results in the lower removal efficiency. High permeate flux is maintained during filtration. The spent SM-PAC was regenerated by the concentrated Cl solutions. NaCl solution whose molar Cl concentration is 1.4 times higher than the contaminants bound on SM-PAC was optimal for the regeneration. Regenerated SM-PAC exhibited similar adsorption capacity to fresh SM-PAC. SM-PAC combined with UF can effectively remove anionic contaminants. Moreover, the simple and efficient regeneration process is proposed.  相似文献   

9.
Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) functionalization of rice husk-based activated carbon was prepared and its application in the removal of copper ions was investigated. The structural properties of the resulting composite material were characterized by means of N2 adsorption/desorption, Fourier transform infrared (FT-IR) and thermogravimetric analysis (TGA). The obtained composite is observed to hold a relatively large pore diameter of 3.8 nm and high surface area of 789 m2 g?1 with 12 wt% of PDMAEMA coated, which is significant for its use as adsorbent. The ability of the composite material for removing Cu2+ from aqueous solution was studied by batch experiments. The adsorption data obeyed the Langmuir isotherms, which revealed that 1 g of the prepared material could adsorb 31.46 mg of Cu2+ from its aqueous solution. The PDMAEMA functionalized activated carbon is expected to be used as an efficient adsorbent for removing other heavy metal ions and dyes in water.  相似文献   

10.
Sorption of metal ions on lignite and the derived humic substances   总被引:5,自引:0,他引:5  
The study presents results of sorption of metal ions (Pb2+, Zn2+, Cu2+, and Cd2+) onto lignite mined in South Moravia, Czech Republic, and solid humic substances (humin and humic acid) derived from it. The efficiency of these sorbents has been studied as a function of contact time, solution pH, and metal concentration. The sorption efficiencies were higher for humin and lower for humic acid samples than for the original lignite. With its high sorption capacities of several mmol/g, particularly for Pb2+ and Cd2+, the South Moravian lignite can provide a cheap source material for preparation of sorbents utilizable in removal of toxic metals from wastewaters.  相似文献   

11.
A column with oxidized multi-walled carbon nanotubes (MWNTs) has been studied as a sorbent for removing and accumulating lead (II) from contaminated Licorice extracts. Under optimized situation, the adsorption capacity of lead (II) on oxidized MWNTs was 17 mg g(-1) at pH 7.0, and the lead (II) was eluted with 10 ml of 1% hydrochloric acid. Additionally, the effects of adsorptive parameters, including pH of the solution, sample volume, flow rates of the sample, matrix ions, and eluent type were investigated for optimization of the presented procedure. A fluorescence spectrophotometer was employed to determine the contents of lead (II). High-performance liquid chromatography (HPLC) was developed for the quantitative determination of main constituents of Licorice extracts. Oxidized MWNT cartridges were used to remove lead ions from contaminated Licorice extracts, high adsorption capacity, adsorption reversibility of lead (II), and low loss of major constituents. The results suggested that the oxidized MWNT column has the potential to remove heavy metal ions from herbal extracts.  相似文献   

12.
The electrical, optical, and adsorption properties of akaganeite (β-FeOOH) can be modified by doping or combining with variety of elements. We prepared metal ions (Sn, Zn) doped β-FeOOH using β-FeOOH nanorods as the precursor by the hydrothermal method and investigated the effect of metal ions (Sn, Zn) on the thermal property of β-FeOOH nanorods. The doping of metal ions (Sn, Zn) was confirmed by X-ray powder diffraction, energy dispersive spectroscopy, and atomic emission spectrometer analysis. Thermogravimetric analysis and differential thermal analysis showed that they have different thermal decomposition temperatures. β-FeOOH nanorods and Zn doped β-FeOOH nanorods were transformed into α-Fe2O3 particles at 400 °C. While Sn doped β-FeOOH nanorods should be heated to higher temperature (600 °C). Sn doped β-FeOOH nanorods showed higher thermal stability due to the Sn ions binding with the framework of β-FeOOH. Both Sn and Zn ions doped β-FeOOH remained the rod like shape.  相似文献   

13.
14.
The new type of ion chelating resin (IDA-PUF) has iminodiacetic group that was prepared from polyurethane foam (PUF) by the reaction between primary amine of PUF and monochloro-acetic acid. The IDA-PUF was characterized using infrared spectra, elemental and thermal analysis. The exchange properties and chromatographic behaviour of the new chelating resin were investigated for removal of some alkali metal ions (lithium, sodium and potassium) using batch and column processes. The maximum distribution coefficient (KD) of trace alkali metal ions was in the pH range of 8–10. The kinetics of sorption of the alkali metal ions was found to be fast with average values of half-life of sorption (t1/2) of 4.93 min. The values of ΔG, ΔS and ΔH were −3.86 kJ mol−1, 57.73 J mol−1 K−1 and 14.41 kJ mol−1, respectively, which reflects the spontaneous and endothermic nature of ion exchanger process. The average sorption capacity of IDA-PUF is 4.8 mmol/g for alkali metal ions, enrichment factors ≈40 and the recovery 95–100% were also achieved with average value of RSD% = 1.67. The proposed method has been successfully applied to preconcentrate, determinate and remove the alkali metal ions from different samples of water.  相似文献   

15.
A new adsorbent (PGCP-COOH) having carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto coconut coir pith, CP (a coir industry-based lignocellulosic residue), using potassium peroxydisulphate as an initiator and in the presence of N,N'-methylenebisacrylamide as a cross-linking agent. The adsorbent was characterized with the help of infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and potentiometric titrations. The ability of PGCP-COOH to remove Hg(II) from aqueous solutions was assessed using batch adsorption technique under kinetic and equilibrium conditions. Adsorbent exhibits very high adsorption potential for Hg(II) and more than 99.0% removal was achieved in the pH range 5.5-8.0. Adsorption process was found to follow first-order-reversible kinetics. An increase of ionic strength of the medium caused a decrease in metal removal, indicating the occurrence of outer-sphere surface complex mechanism. The equilibrium data were fitted well by the Freundlich isotherm model (R(2)=0.99; chi(2)=1.81). The removal efficiency was tested using chlor-alkali industry wastewater. Adsorption isotherm experiments were also conducted for comparison using a commercial carboxylate-functionalized ion exchanger, Ceralite IRC-50. Regeneration experiments were tried for four cycles and results indicate a capacity loss of <9.0%.  相似文献   

16.
The efficiency of parthenium weed as an adsorbent for removing Cd(II) from water has been studied. Parthenium is found to exhibit substantial adsorption capacity over a wide range of initial Cd(II) ions concentration. Effect of time, temperature, pH and concentration on the adsorption of Cd(II) was investigated by batch process. Pseudo-first-order and Pseudo-second-order models were evaluated. The kinetics data for the adsorption process obeyed second-order rate equation. The equilibrium data could be described well by the Langmuir and Freundlich isotherms. Thermodynamic parameters such as DeltaH degrees , DeltaS degrees and DeltaG degrees were calculated. The adsorption process was found to be endothermic and spontaneous. The maximum adsorption of Cd(II) ions (99.7%) in the pH range 3-4 indicated that material could be effectively utilized for the removal of Cd(II) ions from wastewater. The desorption studies showed 82% recovery of Cd(II) when 0.1 M HCl solution was used as effluent.  相似文献   

17.
Most petroleum reservoirs are subjected to Improved and Enhanced Oil Recovery (IOR and EOR) processes following secondary recovery. EOR involves the application of external forces and substances to improve the chemical and physical interactions in hydrocarbon reservoirs in order to improve preferable recovery conditions. The process of chemical flooding with solutions of polymers and surfactants can be used for developing oil exploitation. Studying the interaction between surfactants and polymers is indispensable for successful oil recovery. The interaction between non-ionic and anionic surfactants and polymers in ternary mixtures was examined at different concentrations and temperatures by dynamic light scattering and gel permeation chromatography. The hydrodynamic size of surfactant-polymer composites was higher than the particle size of individual components indicating a formation of associates. The size of associates was increased by increasing the concentration of the surfactants and the temperature. It could be supposed that the polymer formed a mixed micelle with the surfactants. Gel permeation chromatography has confirmed the increase in molecular weight of the associate formed by surfactants and polymers.  相似文献   

18.
19.
The ability of sawdust (treated and untreated) waste, a waste material derived from the commercial processing of cedrus deodar wood for furniture production, to remove/preconcentrate Cd(II) ions from aqueous solution was determined. Sorption was found to be rapid (approximately 97% within 8 min). The binding of metal ions was found to be pH dependent, optimal sorption accruing at around pH 4-8. Potentiometric titrations of sawdust revealed two distinct pK(a) values, the first having the value similar to carboxylic groups (3.3-4.8) and second comparable with that of amines (8.53-10.2) with the densities 1.99 x 10(-4) and 7.94 x 10(-5), respectively. Retained Cd(II) ions were eluted with 5 ml of 0.1 mol l(-1) HCl. Detection limit of 0.016 microg ml(-1) was achieved with enrichment factors of 120. Recovery was quantitative using sample volume of 600 ml. The Langmuir and D-R isotherm equations were used to describe partitioning behavior for the system at different temperatures. Kinetic and thermodynamic behavior of sawdust for Cd(II) ions removal was also studied.  相似文献   

20.
Surface engineered magnetic nanoparticles (Fe3O4) were synthesized by facile soft-chemical approaches. XRD and TEM analyses reveal the formation of single-phase Fe3O4 inverse spinel nanostructures. The functionalization of Fe3O4 nanoparticles with carboxyl (succinic acid), amine (ethylenediamine) and thiol (2,3-dimercaptosuccinic acid) were evident from FTIR spectra, elemental analysis and zeta-potential measurements. From TEM micrographs, it has been observed that nanoparticles of average sizes about 10 and 6 nm are formed in carboxyl and thiol functionalized Fe3O4, respectively. However, each amine functionalized Fe3O4 is of size ∼40 nm comprising numerous nanoparticles of average diameter 6 nm. These nanoparticles show superparamagnetic behavior at room temperature with strong field dependent magnetic responsivity. We have explored the efficiency of these nanoparticles for removal of toxic metal ions (Cr3+, Co2+, Ni2+, Cu2+, Cd2+, Pb2+ and As3+) and bacterial pathogens (Escherichia coli) from water. Depending upon the surface functionality (COOH, NH2 or SH), magnetic nanoadsorbents capture metal ions either by forming chelate complexes or ion exchange process or electrostatic interaction. It has been observed that the capture efficiency of bacteria is strongly dependent on the concentration of nanoadsorbents and their inoculation time. Furthermore, these nanoadsorbents can be used as highly efficient separable and reusable materials for removal of toxic metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号