首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Synthetic Metals》2007,157(8-9):347-357
Two montmorillonites, an inorganic sodium montmorillonite (NaMMT) and an organo-modified montmorillonite (OMMT), were used for the preparation of montmorillonite/polypyrrole (MMT/PPy) composites. MMT particles were modified by the in situ polymerization of pyrrole in water, in aqueous solution of dodecylbenzenesulfonic acid (DBSA) used as anionic surfactant, and in water/methanol. Ferric chloride was used as oxidant in each case. Wide angle X-ray scattering (WAXS) measurements proved the intercalation of PPy into the galleries of NaMMT regardless the reaction media. In contrast, for OMMT/PPy composites, the increase of interlayer spacing depends on the preparation conditions, the highest increase in interlayer spacing was achieved in water/DBSA solution. The WAXS patterns of OMMT/PPy composites synthesized in methanol/water showed no change in interlayer spacing and the electrical conductivity of these composites was low, similar to that of NaMMT/PPy composites prepared under the same conditions. Conductivity about 1.1 S cm−1 was reached for OMMT/PPy composites containing 13.3 wt% PPy prepared in the presence of DBSA. The NaMMT/PPy composite containing 15.6 wt% PPy and prepared under the same conditions showed a conductivity of 0.26 S cm−1. X-ray photoelectron spectroscopy (XPS) proved that the surface of NaMMT/PPy composites is rich in MMT, whereas more PPy was found on the surface of OMMT/PPy composites. The conductivity of composites correlated with the N/Si atomic ratio determined from XPS results, which was taken as a semi-quantitative measure of the PPy surface fraction.  相似文献   

2.
《Synthetic Metals》2004,143(1):59-67
The conducting composites were prepared by chemical oxidative polymerization using pyrrole and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or sulfonated-poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) in chloroform. The pyrrole was protonated and polymerized using iron(III) chloride (FeCl3). The electrical conductivities of PPy/SPPO composites were increased up to 1 order with the amount of PPy compared to PPy/PPO composites. The introduction of sulfuric group to PPO results in the Coulombic interaction between each phase of composites. As a result, the electrical conductivities might be increased due to the effect of miscibility between each phase. The electrical conductivity of PPy/SPPO composite was increased up to 2.14 S/cm with amount of 25 wt.% PPy. The performance of charge–discharge of PPy/SPPO electrode was much higher than that of PPy/PVdF electrode because SPPO act as a dopant as well as a binder.  相似文献   

3.
Polypyrrole (PPy) and silver (Ag) nanorods are synthesized in cetyl trimethylammonium bromide–lauric acid (CTAB–LA) complex coacervate gel template. When PPy–CTAB–LA system is polymerized with AgNO3, Ag nanorods are produced while use of ammonium persulphate (APS) as initiator yields PPy nanorods. Ag-nanorods are produced from the initial stage while PPy nanorods take a longer time. The average diameter of Ag nanorods varies from 60 to 145 nm by increasing AgNO3 concentration from 0.27 M to 1.08 M and that of PPy varies from 145 nm to 345 nm by changing pyrrole concentration from 1 × 10?4 to 2 × 10?4 M, respectively. Fourier transformed infrared (FTIR) spectra indicate stabilization of Ag nanorods through complexation of PPy with adsorbed Ag+ ions. PPy nanoparticles are stabilized by adsorbed sulphate ions and lauric acid, both are acting as dopant to it. FFT pattern and EDX spectra clearly indicate the presence of Ag nanocrystals and PPy on the surface of Ag nanorods, respectively. The mechanism of nanorod formation is attributed from UV–Vis spectra showing a red shift of surface plasmon band of Ag and π–π* transition band of PPy with time. The highest dc conductivity of PPy–Ag composite is found to be 414.2 S/cm, 7 orders higher than that of PPy nanorods (9.3 × 10?4 S/cm). PPy–Ag systems show Ohmic behavior while PPy nanorods exhibit semi-conducting behavior. The preferential formation of Ag nanorod in AgNO3 initiated polymerization is attributed to the higher cohesive force of Ag than that of PPy. With two times higher LA and CTAB concentration in the gel the Ag nanorod diameter decreases only 12% while that of PPy nanorod decreases by 50%. Possible reasons are discussed from the hard and soft nature of the two nanorods and from the elasticity of the gel template.  相似文献   

4.
The conducting polypyrrole–polyethylene glycol (PPy–PEG) composite films were produced at various polymerization temperature ranging from 5 °C to 60 °C using 1 × 10?3 M PEG, 0.20 M pyrrole and 0.10 M p-toluene sulfonate at 1.20 V (vs. SCE). The polymerization temperature of 5 °C appeared as the optimum preparation temperature showing the highest electrical conductivity of 70 S/cm and the thermal diffusivity of 8.76 × 10?7 m2 s?1. The electrical conductivity and thermal diffusivity exhibited a decreasing trend with the increase in polymerization temperature in the pyrrole solution used to prepare the composite films. The XRD results reveal that low temperature (5 °C) typically results in more crystalline films, which are denser, stronger and have higher conductivity. The optical microscopy of PPy–PEG shows the globular surface morphology. The surface of the of the solution side of PPy–PEG film prepared at low temperatures showed a globular morphology.  相似文献   

5.
《Synthetic Metals》2001,123(2):327-333
The electrically conducting composites are prepared by chemical oxidative polymerization using polypyrrole (PPy) and polycarbonate (PC) or sulfonated polycarbonate (SPC) in chloroform. The pyrrole was protonated and polymerized using iron(III) chloride (FeCl3). The sulfonic group was introduced into the structure of PC in order to enhance the coulombic interaction between each phase of composites. The electrical conductivity and morphology were observed as a function of the amount of PPy. The electrical conductivity was increased up to 0.82 S/cm with the amount of PPy. The PPy/SPC composites were stable in atmosphere.  相似文献   

6.
《Synthetic Metals》2006,156(5-6):420-425
Chemically synthesized polypyrroles of low (σ < 75 S/cm), medium (75 < σ < 200 S/cm) and high (σ > 200 S/cm) electrical conductivity (σ) with the same dopant and degree of doping have been investigated by means of Wide Angle X-ray Scattering (WAXS), 13C Cross Polarized Magic Angle Spinning Nuclear Magnetic Resonance (13C CP/MAS NMR) spectroscopy and Fourier Transform Infrared (FTIR) Spectroscopy to establish structure–conductivity relationships useful for industrial applications. A similar amorphous structure was found by WAXS even for the higher conducting PPy (σ = 288 S/cm). WAXS spectra for polypyrroles of medium and high conductivity showed a weak peak at 2θ = 10–11° due to improved order of the counterions in these materials. The effect of the counterion size in the asymmetry of the PPy main WAXS peak was elucidated by performing ion exchange of the Cl dopant with counterions of larger size such as BF4 and ClO4. From 13C CP/MAS NMR measurements predominantly α–α′ bonding was found in these materials. The main 13C CP/MAS NMR resonance peak of PPy located at 126–128 ppm was broadened upon increasing conductivity. Interestingly, a linear relationship was observed between the half-width at half-height (HWHH) of the 13C CP/MAS NMR peak and conductivity where a doubling of the polypyrrole conductivity leads to an increase of HWHH by 6–7 ppm. FTIR data of these materials were analysed in the framework of the Baughman–Shacklette theory describing the dependence of conductivity on conjugation length. By comparison of model predictions and experimental results, the PPy samples were found to be in the regime of long conjugation lengths, L  K2/kBT, where K2 is a parameter related to the energy change on going from j  1 to j charges on a conjugated segment of conjugation length L, kB the Boltzman constant and T is the absolute temperature.  相似文献   

7.
《Synthetic Metals》2002,126(1):111-116
Chemical oxidative polymerization of pyrrole was performed in the presence of two families of aromatic compounds with electron-withdrawing substituents. The first one includes 3-hydroxybenzoic acid (HBA) and two HBA-related compounds, such as 6-hydroxypicolinic acid (HPA) and citrazinic acid (CA). The second one includes trans-3-hydroxycinnamic acid (HCA) and two HCA-related compounds, such as trans-4-hydroxy-3-methoxycinnamic acid (HMA) and urocanic acid (UA). It was found that HBA, HPA and HCA enhance both the conductivity and stability of the resulting PPy. UA improves only the PPy stability whereas CA and HMA lead to low conducting PPy. Maximum PPy conductivity values of 81, 74 and 123 S/cm were obtained by using [HBA]=0.25 M, [HPA]=0.025 M and [HCA]=0.025 M, respectively. Elemental analysis data and FTIR results showed no incorporation of the additives to the obtained PPy, except for HMA. The formation of additive-iron(III) charge–transfer complexes was identified by means of UV spectroscopy of the starting solutions containing the organic additive and FeCl3·6H2O. The redox potential of these solutions was affected by the presence of the HBA- and HCA-related compounds.  相似文献   

8.
《Synthetic Metals》2007,157(22-23):914-923
Polypropylene (PP) and viscose (VS) textiles were modified by the in situ synthesis of a conducting polypyrrole (PPy) overlayer. To improve adhesion of the conducting layer to the textile surface, a pyrrole-functionalized silane (SP) was synthesized and bonded onto the surface before polypyrrole formation. Moreover, to introduce hydroxyl groups into the surface, PP was pretreated by grafting vinyltrimethoxysilane by means of a radiofrequency plasma discharge. The study is focused on the influence of SP on the washing fastness of a PPy layer and, consequently, on the overall conductivity of the textiles after washing. In the case of viscose, PPy was found to penetrate the substrate. A compromise was found between the influence of SP and penetration phenomenon (best conductivity after washing: wVS–0.2SP/25Py = 3 × 10−5 S/square). In the case of polypropylene the effect of pretreatment with SP is much better than for viscose, and a higher concentration of SP leads to improved fastness of the conductive layer (wmPP–0.2SP/25Py = 3 × 10−5 S/square; wmPP–1SP/25Py = 8 × 10−5 S/square), which indicates that the coating promoted by means of SP is more favoured than for viscose.  相似文献   

9.
A. Soroudi  M. Skrifvars 《Synthetic Metals》2010,160(11-12):1143-1147
Blends of polypropylene with polyaniline and multi-walled carbon nanotubes have been prepared and melt spun to fibre filaments. The resulted filaments have been characterised regarding conductivity, morphology, thermal and mechanical properties. DSC suggests that carbon nanotubes act as nucleating sites for PP/polyaniline blend. Electrical conductivity has been measured for blends with extruded rod shape, as-spun fibre filaments and fibres made under draw ratio of four. Polypropylene containing 20 wt% polyaniline polymer modified with 7.5 wt% carbon nanotubes shows the maximum conductivity among all the samples, about 0.16 S/cm.  相似文献   

10.
Hot pressed dense SiC-(0, 10, 30 or 50 wt%)WC composites were subjected to erosion against SiC particles at 800 °C. Effects of WC content and angle of impingement (30°, 60° or 90°) on the erosion performance of composites were evaluated. Erosion rate ranged from 2.1 × 102 mm3/kg to 7.7 × 102 mm3/kg with varying WC content or angle of impingement. The erosion rate of the composites increased with increasing the impingement angle from 30° to 90°, and decreased with WC content up to 30 wt%. Minimum and maximum erosion wear rates were obtained for SiC-30 wt% WC composites at 30° and for SiC-50 wt% WC composites at normal impact, respectively. Grain fracture and pull-out were observed as major mechanisms of material removal for the composites. Decreased angle of impingement led to reduced grain fracture and pull-out, and hence reduction in material removal. Owing to increased fracture toughness with incorporation of WC particles, the composites showed less fracture and removal of WC particles up to 30 wt% reinforcement.  相似文献   

11.
Polypyrrole (PPy) films doped by p-toluenesulfonic (PTS) ion were prepared by pulse current polymerization (PCP PPy) and direct current polymerization (DCP PPy) in aqueous solution. During polymerization of DCP PPy films, the sustained high anodic potentials can result in overoxidation and –CH2– formation at pyrrole rings, which was confirmed by the FTIR spectroscopy. PCP PPy films exhibited more homogeneous and smoother appearance than DCP PPy films. The apparent diffusion coefficient of PCP PPy films was one order of magnitude bigger than that of DCP PPy films, which was closely correlated with the more ordered structure of PCP PPy films confirmed by XRD. When the scanning rate reached up to 500 mV s?1, the CV curves of PCP PPy films showed rectangular shape within voltage range of ?0.8 V to +0.8 V. High charge/discharge rate of PCP PPy films can be attributed to well wettability, very small charge transfer resistance, high electronic conductivity and ions apparent diffusion coefficient. After 50,000 charge/discharge cycles, the specific capacitance of PCP PPy films only decreased by 14% at a charge/discharge current of 20 A g?1 within voltage range of 0–0.4 V.  相似文献   

12.
Monodisperse particles of conducting polypyrrole (PPy) were directly synthesized in large quantities by emulsion polymerization with FeCl3 in organic solvents in the presence of polyvinylpyrrolidone (PVP). The particles were almost spherical form capped with PVP and their sizes ranged from 30 to 60 nm with a narrow size distribution when molecular weight of PVP was 3700k. The particle sizes were decreased with an increase in molecular weight of PVP: as molecular weight is increased from 40k to 3600k, the size is decreased from 90–110 to 60–80 nm, respectively. These PPy particles are easily dispersed in organic solvents such as water, methanol, butanol isopropanol and these solutions can also be blended with organic binder polymers by casting for film formation. The conductivity of pelletized PPy particles was 10–15 S/cm.  相似文献   

13.
The composites of multi-walled carbon nanotubes (MWNT) wrapped with low bandgap conjugated polymer and poly(methyl methacrylate) (PMMA) were prepared for transparent conductive films. NIR-absorbing poly(ethyl thieno[3,4-b]thiophene-2-carboxylate) (PTTEt) with Eg of 1.0 eV was used in this study. Upon hybridization with MWNT, PTTEt in an insulating state became partially conductive due to electron transfer from PTTEt to MWNT, meaning that PTTEt can function as conductive glue interconnecting MWNT in a PMMA matrix. The electrical conduction of the composites (PTTEt-MWNT/PMMA), consisting of PTTEt-wrapped MWNT (PTTEt-MWNT/PMMA) and PMMA, showed the percolation at 0.10 wt% MWNT loading, which was ca. 0.18 wt% lower than the composites of MWNT and PMMA (MWNT/PMMA). The maximum conductivity of PTTEt-MWNT/PMMA, on the other hand, was one order of magnitude lower than that of MWNT/PMMA, suggesting that PTTEt incorporation onto MWNT for transparent conductive films is effective within a specific range of MWNT loadings (i.e., between percolation thresholds of MWNT/PMMA and PTTEt–MWNT/PMMA). The comparison of transmittance of PTTEt–MWNT/PMMA (0.18 wt% MWNT) with MWNT/PMMA (0.32 wt% MWNT), possessing the same conductivities (3 × 10?3 S cm?1), showed ca. 10% enhanced transmittance at 550 nm. These results imply that hybridization of low bandgap conjugated polymers with carbon nanotubes can be utilized for the reduction of percolation threshold and the increase of optical transparency without sacrificing conductivities at low MWNT loadings.  相似文献   

14.
The electrical conductivity of chitin–polyaniline blend doped with HCl has been studied in the temperature range 323–373 K for various blend compositions. Conductivity of blends increases from less than ≈10?7 S/cm to 2.15 × 10?5 S/cm, depending on the percentage of polyaniline in the blend due to self-doping of LiCl. When these blends are doped with HCl conductivity raises to ≈9.68 × 10?2 S/cm. Current–voltage data is analyzed using various models available. The results suggest Schottky–Richardson and one-dimensional variable range hopping mechanisms for undoped blend and one-dimensional variable range hopping mechanism in the case of doped blend.  相似文献   

15.
S.V. Jadhav  Vijaya Puri 《Synthetic Metals》2008,158(21-24):883-887
Polyaniline (PANI) thin film on alumina was prepared by the chemical oxidation of aniline with ammonium peroxydisulphate in acidic aqueous medium. DC conductivity, microwave transmission and reflection, microwave conductivity, shielding effectiveness and microwave dielectric constant of the conducting PANI films are reported. DC conductivity was between 0.15 × 10?3 and 3.13 × 10?3 S/cm. Microwave conductivity was between 0.2 and 10 S/cm. The PANI films coated on alumina gave shielding effectiveness value of ?1 to ?4 db. The ?′ was between 2 and 350 whereas ?″ was between 437 and 60. Measurements have been carried over the frequency range of 8.2–18 GHz.  相似文献   

16.
High conductivity and supermagnetism of polyaniline (PANI)-coated multi-walled carbon nanotube (MWCNT) composites containing monodispersed 6 nm iron oxide (Fe3O4) nanoparticles has been successfully synthesized by in situ chemical oxidative polymerization using anionic surfactant dodecylbenzenesulfonic acid sodium salt. Hydrophilic 6 nm spherical Fe3O4 nanoparticles fabricated by the thermal decomposition process were chemically modified using 11-aminoundecanoic acid tetramethylammonium salt. The modified nanoparticles were further mixed with carboxylic acid containing multi-walled carbon nanotubes (c-MWCNTs) in an aqueous solution to form one-dimensional Fe3O4 coated c-MWCNT template and PANI/c-MWCNT nanocomposite were then synthesized via in situ chemical oxidative polymerization in HCl solution. Structural and morphological analysis using FESEM, HRTEM and XRD showed that the fabricated Fe3O4 coated c-MWCNT/PANI nanocomposites are one-dimensional core (Fe3O4 coated c-MWCNT)–shell (PANI) structures. The electrical conductivity of 1 wt% Fe3O4 coated c-MWCNT/PANI nanocomposites at room temperature is 37.7 S/cm, which is decreased to 28.6 S/cm with the loading of 5 wt% Fe3O4 nanoparticles. The magnetic properties of Fe3O4 coated c-MWCNT/PANI nanocomposites exhibit supermagnetism with saturation magnetization in the range of 0.04–0.15 emu/g, which increases as the amount of Fe3O4 nanoparticles increases.  相似文献   

17.
Porous carbon nanofiber composites (NFCs) were prepared by electrospinning blended solutions of polyacrylonitrile (PAN) and polymethylhydrosiloxane (PMHS) in N,N-dimethylformamide (DMF). A PMHS concentration of 5 wt% was regarded as the optimum concentration to obtain fibers of a uniform size with a homogeneous dispersion of silica, the maximum specific surface area and the highest conductivity (4.91 S cm?1) after heat treatment at 800 °C. The supercapacitor electrode prepared with 5 wt% PMHS had the highest specific capacitance, 126.86 F/g, and the highest energy density, 17.0–10.0 Wh/kg, in the range of 400–20,000 W/kg in a 6 M KOH aqueous solution.  相似文献   

18.
SiC–ZrC ablation resistance coating was prepared on the surface of carbon fiber reinforced carbon (C/C) composites by simple pack cementation combined with low-cost slurry infiltration method. The results showed that SiC–ZrC coating could effectively protect C/C composites from ablation for 45 s at 3723 K under oxyacetylene torch. The mass and linear ablation rates (0.038 ± 0.01 mg/(s cm2) and 2.42 ± 0.15 μm/s) were largely reduced compared with that of uncoated C/C composites (0.530 ± 0.01 mg/(s cm2) and 1.75 ± 0.15 μm/s) after ablation for 20 s. The good ablation protective ability of SiC–ZrC coating is mainly attributed to the volatilization of SiO2 and the formation of ZrO2.  相似文献   

19.
Conducting PVDF/PPy composites (PPy composites) were prepared by using the highly porous electrospun (e-spun) nonwoven web as a host polymer. E-spun nonwoven web was made by electrospinning a solution of PVDF and CuCl2·2H2O in solvent of N,N-dimethylacetamide (DMAc). The PPy composites were fabricated by exposing a nonwoven web containing oxidant to pyrrole vapors. Field-emission scanning electron microscopy (FE-SEM) analysis was conducted to show the microstructure of the nonwoven webs and the uniform coating of PPy on the e-spun fiber surfaces of the PPy composite. The information of PPy on the e-spun fibers surface was confirmed by attenuated Fourier-transform infrared spectrometer (ATR FT-IR) and X-ray photoelectron spectroscope (XPS). The thermal property of PPy composites was also investigated by differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA). The electrical conductivity of the PPy composites was affected by the fabrication method and oxidant content in the nonwoven web. The electrical conductivity and mechanical strength of the PPy composites were improved when surface-modified multi-walled carbon nanotubes (MWCNTs) were added to the e-spun fibers. Energy-filtered transmission electron microscopy (EF-TEM) results confirmed that the MWCNTs were well arranged and embedded in the e-spun fibers. The observed conductivity of the conducting PPy-MWCNTs composite was 10?1 S/cm.  相似文献   

20.
S.K. Singh  R.K. Gupta  R.A. Singh 《Synthetic Metals》2009,159(23-24):2478-2485
Charge transfer complex (CTC) of phenothiazine and iodine (1:2 molar ratio) was prepared by solvent evaporation method in diethyl ether and its composite with poly(vinyl chloride) was prepared in benzene by diffusion method. Infra-red spectra showed overlapped peaks for both components and intensity of individual component was proportional to feed ratio. Optical photographs and scanning electron microscopy of composites showed template growth and connectivity in insulator matrix was proportional to wt% of CTC. Mechanical strength of composites was found to increase with wt% of PVC. The current–voltage study showed percolation threshold of 8 wt% of CTC. The temperature dependence of conductivity showed semiconducting nature of the materials. Transport property of charges were explained by regression analysis of σdc vs. T?1/1+n data and meets the basis for the Mott's 2D, 3D variable range hopping or thermoionic emission model, depending on temperature and wt% of CTC content. The impedance spectroscopy was performed between 40 Hz–100 kHz range. Circuit elements consists only combination of resistance and capacitance, which showed homogeneous nature of composites. Thermoelectric factor ‘S’ was also evaluated and has value of <1 at 303 K in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号