首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The thermal–hydraulic analysis code THAC-PRR has been developed with Visual Fortran 6.5 for the investigation of plate type fuel reactors. It is based on the fundamental conservation of mass, momentum and energy, and proper constitutive correlations for flow friction factor, heat transfer and thermophysical properties. Moreover, a simple and improved lumped-differential method has been adopted to analyze the conjugate heat transfer between the fuel plate and the coolant. The Reactivity Insertion Accident (RIA) and Loss Of Flow Accident (LOFA), which have been defined in the IAEA 10 MW MTR Benchmark program, were analyzed with this developed program for the code-to-code validation. Good agreement was achieved. Furthermore, the accidents due to the partial (95%) and total (100%) blockage of one channel in the IAEA 10 MW MTR were investigated with THAC-PRR. The results showed that if the blockage occurred in the average channel, there was no boiling occurred even the channel was totally obstructed. The reason was that the heat was transferred to the adjacent channels by conduction through the fuel plates which formed the obstructed channel. However, if the blockage occurred in the hot channel, boiling did occur. This indicated that it is very important to consider the interaction between the blocked channel and the adjacent channels in this type of transient.  相似文献   

2.
3.
India has developed two concepts of breeding blanket for the DEMO reactor: one is Lead Lithium Ceramic Breeder (LLCB), and the other one is Helium-cooled Ceramic Breeder (HCCB) concept. Indian HCCB concept is having edge on configuration of helium-cooled solid breeder with RAFMS structure. Li2TiO3/Li4SiO4 and beryllium are used as the tritium breeder and neutron multiplier, respectively. 2D thermal–hydraulic simulation studies using ANSYS have been performed based on the heat load obtained from neutronics calculations to confirm heat removal under ITER pulsed operation. Transient thermal analysis has been simulated in ANSYS for the ITER relevant operational conditions. Thermal analysis provides important information about the temperature distribution in different materials used and their temperature–time histories. Result of thermal–hydraulic simulations shows that in each cycle, the maximum temperature of all materials remains same. The peak temperatures of all materials are well within their limiting value. Concept designs of HCCB blanket and its thermal hydraulic analysis will be presented in this paper.  相似文献   

4.
An open-air furnace has been designed to study in real time the high-temperature surface transformation of materials by Rutherford backscattering spectrometry (RBS) in external beam mode. A device previously designed for the observation of the high-temperature oxidation of galena has been re-designed in order to analyse massive samples and to reach a temperature range up to 700 °C and a better temperature regulation (±2 °C).Experiments are carried out to measure, by RBS using a 3 MeV 4He2+ external micro-beam, the dynamic growth of oxide layers in air on the surface of copper–tin alloys heated at temperatures varying from 250 to 650 °C. The results obtained demonstrate the usefulness of this approach: actually one single measurement series permits to obtain at the same time the composition of oxide layers built on the metal and their growth kinetic laws.In the particular study of bronzes, the growth kinetics obtained by this method show the large influence of tin concentration on the oxidation mechanism. These results are verified by measurements on samples oxidised in an independent closed furnace. The results show also the occurrence of different oxidation mechanisms as a function of temperature. A diffusion mechanism governs the oxidation kinetics only at some temperatures.  相似文献   

5.
The thermal–hydraulic behavior and safety performance of the Chinese helium-cooled solid breeder (CH HCSB) test blanket module (TBM) with helium cooling system (HCS) has been studied using RELAP5/Mod3.4 code. According to accident analysis specification for TBM, two design basis accidents including loss of off-site power and TBM first wall (FW) ex-vessel coolant pipe break are investigated. The influences of different break locations and plasma termination behaviors are analyzed comprehensively. The results show that natural circulation is established in helium cooling circuit and the TBM can be cooled effectively after loss of off-site power. It is much more critical when the pipe break occurs at the downstream side of the circulator compared with that of upstream side of the circulator. In case of a more serious accident that the ex-vessel break extends to the TBM FW, the results reveal that TBM could be cooled down by natural circulation and radiation. In addition, at the beginning of ex-vessel loss of coolant accident (LOCA), large temperature difference between break and intact TBM FW pipes is found. The accidental results finally show that the integrity of the FW can be guaranteed if the plasma is terminated with a 3 s delay time by fusion power shutdown system (FPSS) in the case of ex-vessel LOCA.  相似文献   

6.
ThermalhydraulicstabilityofanaturalcirculationsystemwithnuclearfeedbackXuZhanJie,ChenLiQiang,MaChangWenandWuShaoRong(In...  相似文献   

7.
The entire nuclear fuel cycle involves partitioning classification and transmutation recycling. The usage of a tokamak as neutron sources to burn spend fuel in a gas cooled subcritical fast reactor (GCSFR) reduces the amount of long-lived radionuclide, thus increasing the repository capacity.  相似文献   

8.
At supercritical pressure condition, the thermal–hydraulics behavior of water differs strongly from that at sub-critical pressure due to a rapid variation of the thermal–physical properties across the pseudo-critical line. A coupling analysis of neutronics and thermal–hydraulics has become important for SCWR, because of the strong link between the water density and the neutron spectrum and subsequently the power distribution. The neutronics code Monte Carlo N-Particle code (MCNP) and the subchannel code Advanced Thermal–Hydraulics Analysis Subchannel (ATHAS) are used in a coupled way to better understand the design characteristics of a pressure tube type SCWR fuel channel. The results show that: the developed coupled code system can be used to analyze pressure tube type SCWR fuel bundles; improved radial fuel enrichment profile will optimize the coolant and cladding temperature distribution to meet the design criteria; smaller pressure tube pitch will result in more flatten axial power distribution and more uniform radial power distribution.  相似文献   

9.
10.
Three dimensional CFD full simulations of the fast loss of flow accident (FLOFA) of the IAEA 10 MW generic MTR research reactor are conducted. In this system the flow is initially downward. The transient scenario starts when the pump coasts down exponentially with a time constant of 1 s. As a result the temperatures of the heating element, the clad, and the coolant rise. When the flow reaches 85% of its nominal value the control rod system scrams and the power drops sharply resulting in the temperatures of the different components to drop. As the coolant flow continues to drop, the decay heat causes the temperatures to increase at a slower rate in the beginning. When the flow becomes laminar, the rate of temperature increase becomes larger and when the pumps completely stop a flow inversion occurs because of natural convection. The temperature will continue to rise at even higher rates until natural convection is established, that is when the temperatures settle off. The interesting 3D patterns of the flow during the inversion process are shown and investigated. The temperature history is also reported and is compared with those estimated by one-dimensional codes. Generally, very good agreement is achieved which provides confidence in the modeling approach.  相似文献   

11.
The first wall (FW) is one of the most important components of any fusion blanket design. India has developed two concepts of breeding blanket for the DEMO reactor: the first one is Lead–Lithium cooled Ceramic Breeder (LLCB), and the second one is Helium-Cooled Ceramic Breeder (HCCB) concept. Both the concept has the same kind of FW structure. Reduced Activation Ferritic Martensitic steel (RAFMS) used as the structural material and helium (He) gas is used to actively cool the FW structure. Beryllium (Be) layer of 2 mm is coated on the plasma side of the FW as the plasma facing material. Cooling channels running in radial–toroidal–radial direction in the RAFMS structure are designed to withstand the maximum He pressure of 8 MPa. Heat transfer coefficients (HTC) obtained form the correlations revealed that required cooling could be achieved by artificially roughened surface towards the plasma-side wall of He cooling channel which helps to keep the RAFMS temperatures below the allowable limit. A 1D analytical and 2D thermal–hydraulic simulation studies using ANSYS has been performed based on the heat load obtained from neutronics calculations to confirm the heat removal and structural integrity under various conditions including ITER transient events. The required helium flow through the cooling channels are evaluated and used to optimize the suitable header design. The detail design of FW thermal–hydraulics, thermo-structural analyses, and He flow distribution network will be presented in this paper.  相似文献   

12.
With the advantages of high reliability, power density, and long life, nuclear power reactors have become a promising option for space power. In this study, the Reactor Excursion and Leak Analysis Program 5(RELAP5), with the implementation of sodium–potassium eutectic alloy(NaK-78) properties and heat transfer correlations, is adopted to analyze the thermal–hydraulic characteristics of the space nuclear reactor TOPAZ-Ⅱ.A RELAP5 model including thermionic fuel elements(TFEs), reactor core, radiator, coolant loop, and volume accumulator is established. The temperature reactivity feedback effects of the fuel, TFE emitter, TFE collector,moderator, and reactivity insertion effects of the control drums and safety drums are considered. To benchmark the integrated TOPAZ-Ⅱ system model, an electrical ground test of the fully integrated TOPAZ-Ⅱ system, the V-71 unit,is simulated and analyzed. The calculated coolant temperature and system pressure are in acceptable agreement with the experimental data for the maximum relative errors of 8 and 10%, respectively. The detailed thermal–hydraulic characteristics of TOPAZ-Ⅱ are then simulated and analyzed at the steady state. The calculation results agree well with the design values. The current work provides a solid foundation for space reactor design and transient analysis in the future.  相似文献   

13.
《Annals of Nuclear Energy》2001,28(9):857-873
Three-dimensional hexagonal reactor dynamic codes have been developed for VVER type reactors and coupled with different thermal–hydraulic system codes. In the EU Phare project SRR1/95 these codes have been validated against real plant transients by the participants from several countries. Data measured during a test in the Balakovo-4 VVER-1000 have been analysed by coupled codes. In the test, one of two working feed water pumps of the steam generators was switched off at nominal power. The steady-state assembly powers measured before and after this transient are reproduced by the codes with a maximum deviation of about 5%. The time behaviour of the most safety-relevant parameters, such as total fission power, coolant temperatures and pressures is well modelled. Thermal–hydraulic feedback effects observed in the measurement are described by the codes in a consistent manner. The analyses have shown, that an accurate treatment of the heat transfer from the fuel rods to the coolant is important. In all, the results have increased the confidence in the coupled code analyses of VVER-1000 transients.  相似文献   

14.
Within the framework of the project “Jewelmed” (ICA3-1999-10020), the chemical composition of 34 gold and four silver jewels was examined. These jewels belong to the Benaki museum's collection in Athens, Greece and are dating from the 7th to the 1st century BC. The compositional analysis of the jewels was performed by means of a “home-made” portable X-ray fluorescence (XRF) spectrometer. The XRF results have shown that the gold jewels can be categorized in two groups, which include artifacts made by native and by high purity gold, respectively. For the silver jewels the results have provided interesting information regarding the manufacturing technology, the authenticity of the jewels and the raw materials used. The potential and the limitations of the XRF technique, applied in the chemical analysis of archaeological metal artifacts, are also discussed.  相似文献   

15.
The fusion–fission hybrid reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc., with the fusion neutron source striking the subcritical blanket. The passive safety system consists of passive residual heat removal system, passive safety injection system and automatic depressurization system was adopted into the fusion–fission hybrid reactor in this paper. Modeling and nodalization of primary loop, partial secondary loop and passive core cooling system for the fusion–fission hybrid reactor using relap5 were conducted and small break LOCA on cold leg was analyzed. The results of key transient parameters indicated that the actuation of passive safety system could mitigate the accidental consequence of the 4-inch cold leg small break LOCA on cold leg in the early time effectively. It is feasible to apply the passive safety system concept to fusion–fission hybrid reactor. The minimum collapsed liquid level had great increase if doubling the volume of CMTs to increase its coolant injection and had no increase if doubling the volume of ACCs.  相似文献   

16.
In probabilistic risk assessment (PRA), an event tree (ET) methodology is widely used to quantify accident scenarios which result in core damage and fission products release. However, the current approach using the ET methodology is not applicable to evaluate dynamic characteristics of accident progression, when the accident progression is time-dependent and headings in the ET have inter-dependency between events. Thus, a dynamic approach of accident scenario quantification is necessary to evaluate more realistic PRA.

This research addressed this need by developing a dynamic scenario quantification method for the level 2 PRA by coupling of Continuous Markov chain and Monte Carlo (CMMC) method and a plant thermal–hydraulic analysis code for a sodium-cooled fast reactor (SFR).

The CMMC method is applied to protected loss of heat sink (PLOHS) accident of the SFR to analyze dynamic scenario quantifications. The coupling method requires heavy computational cost and it makes difficult to quantify the whole accident scenarios by comparing the results from existing plant state analysis codes. Thus, a meta-analysis coupling method is proposed to obtain dynamic scenario quantifications with reasonable computational cost. Also, a categorizing method is used to depict analytical results in a transparent manner.  相似文献   


17.
In order to implement numerical simulation of the thermal–mechanical behaviors in the nuclear fuel rods, a three-dimensional finite element model is established. The thermal–mechanical behaviors at the initial stage of burnup in both the pellet and the cladding are obtained. Comparison of the obtained numerical results with those from experiments validates the developed finite element model. The effects of the constraint conditions, several operation and structural parameters on the thermal–mechanical performances of the fuel rod are investigated. The research results indicate that: (1) with increasing the heat generation rates from 0.15 to 0.6 W/mm3, the maximum temperature within the pellet increases by 99.3% and the maximum radial displacement at the outer surface of the pellet increases by 94.3%. And the maximum Mises stresses in the cladding all increase; while the maximum values of the first principal stresses within the pellet decrease as a whole; (2) with increasing the heat transfer coefficients between the cladding and the coolant, the internal temperatures reduce and the temperature gradient remains similar; when the heat transfer coefficient is lower than a critical value, the temperature change is sensitive to the heat transfer coefficient. The maximum temperature increases only 7.13% when h changes from 0.5 W/mm2 K to 0.01 W/mm2 K, while increases up to 54.7% when h decreases from 0.01 W/mm2 K to 0.005 W/mm2 K; (3) the initial gap sizes between the pellet and the cladding significantly affect the thermal–mechanical behaviors in the fuel rod; when the gap size varies from 0.03 mm to 0.1 mm, the highest temperature in the pellet increases by 19.7%, and the maximum first principal stress at the outer pellet surface decreases by 17.4%; it is critical to optimize the gap size in order to reduce the pellet–cladding mechanical interaction and avoid their contact at early stage. This study lays a foundation for the further research on the irradiation-induced mechanical behaviors in the fuel rods.  相似文献   

18.
Lead–alloy cooled fast reactor is one of the six Gen-IV reactors. It has many attractive features such as excellent natural circulation performance, better shielding against gamma rays or energetic neutrons and potentially reduced capital costs. A natural circulation lead–alloy cooled fast reactor with 10 MWth is under design in China (hereafter called LFR-10MW). Fuel assemblies thermal hydraulic analysis is of vital importance for a successful design. A subchannel analysis code with flow distribution model was used to carry out the thermal hydraulic analysis. This work briefly gave the thermal-hydraulic design for the LFR-10MW and analyzed the thermal-hydraulic characteristics under steady-state condition using the subchannel analysis code. Whole core analysis was performed to locate the hottest fuel assembly using the code. The hottest fuel assembly was analyzed to obtain the cladding temperature, fuel temperature and coolant velocity. The maximum cladding temperature, the maximum fuel center temperature and the maximum coolant velocity are all below the design constraints. These results imply that the thermal-hydraulic design of LFR-10MW is feasible.  相似文献   

19.
The surface enrichment of archaeological silver–copper alloys has been recognized for many years. However, the origin of this enrichment is not well defined and many hypotheses have been put forward to account for this behaviour: segregation of the components during casting, deliberate thermal and/or chemical post-treatment, abrasion or corrosion. Among the hypotheses mentioned above, we have focused our study on the first step of coin manufacturing. Replications of silver–copper standards of various compositions ranging from 30% to 80% Ag, reflecting the composition of silver blanks, have been produced. Metallographic examination, PIXE and SEM–EDS have been used for the characterization of each sample. A model of the direct enrichment has been established. This model allows us to propose a relationship between the surface composition and the silver content of the core. Comparison with data of Roman coins from the Roman site of Châteaubleau (France) and from the literature and consequences for the analyses of ancient coins by surface methods are presented.  相似文献   

20.
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system. This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink. This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability i...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号