首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of using different low enriched uranium fuels, having same uranium density, on the kinetic parameters of a material test research reactor were studied. For this purpose, the original aluminide fuel (UAlx-Al) containing 4.40 gU/cm3 of an MTR was replaced with silicide (U3Si-Al and U3Si2-Al) and oxide (U3O8-Al) dispersion fuels having the same uranium density as of the original fuel. Simulations were carried out to calculate prompt neutron generation time, effective delayed-neutron fraction, core excess reactivity and neutron flux spectrum. Nuclear reactor analysis codes including WIMS-D4 and CITATION were used to carry out these calculations. It was observed that both the silicide fuels had the same prompt neutron generation time 0.02% more than that of the original aluminide fuel, while the oxide fuel had a prompt neutron generation time 0.05% less than that of the original aluminide fuel. The effective delayed-neutron fraction decreased for all the fuels; the decrease was maximum at 0.06% for U3Si2-Al followed by 0.03% for U3Si-Al, and 0.01% for U3O8-Al fuel. The U3O8-Al fueled reactor gave the maximum ρexcess at BOL which was 21.67% more than the original fuel followed by U3Si-Al which was 2.55% more, while that of U3Si2-Al was 2.50% more than the original UAlx-Al fuel. The neutron flux of all the fuels was more thermalized, than in the original fuel, in the active fuel region of the core. The thermalization was maximum for U3O8-Al followed by U3Si-Al and then U3Si2-Al fuel.  相似文献   

2.
The reactivity feedbacks of a material test research reactor using various low enriched uranium fuels, having same uranium density were calculated. For this purpose, the original aluminide fuel (UAlx–Al) containing 4.40 gU/cm3 of an MTR was replaced with silicide (U3Si–Al and U3Si2–Al) and oxide (U3O8–Al) dispersion fuels having the same uranium density as of the original fuel. Calculations were carried out to find the fuel temperature reactivity feedback, moderator temperature reactivity feedback, moderator density reactivity feedback and moderator void reactivity feedback. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It was observed that the magnitudes all the respective reactivity feedbacks from 38 °C to 50 °C and 100 °C, at the beginning of life, of all the fuels were very close to each other. The fuel temperature reactivity feedback of the U3O8–Al was about 2% more than the original UAlx–Al fuel. The magnitudes of the moderator temperature, moderator density and moderator void reactivity feedbacks of all the fuels, showed very minor variations from the original aluminide fuel.  相似文献   

3.
The effects of using high density low enriched uranium on the uncontrolled reactivity insertion transients of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density U–Mo (9w/o) LEU fuels currently being developed under the RERTR program having uranium densities of 6.57 gU/cm3, 7.74 gU/cm3 and 8.57 gU/cm3. Simulations were carried out to determine the reactor performance under reactivity insertion transients with totally failed control rods. Ramp reactivities of 0.25$/0.5 s and 1.35$/0.5 s were inserted with reactor operating at full power level of 10 MW. Nuclear reactor analysis code PARET was employed to carry out these calculations. It was observed that when reactivity insertion was 0.25$/0.5 s, the new power level attained increased by 5.8% as uranium density increases from 6.57 gU/cm3 to 8.90 gU/cm3. This results in increased maximum temperatures of fuel, clad and coolant outlet, achieved at the new power level, by 4.7 K, 4.4 K and 2.4 K, respectively. When reactivity insertion was 1.35$/0.5 s, the feedback reactivities were unable to control the reactor which resulted in the bulk boiling of the coolant; the one with the highest fuel density was the first to reach the boiling point.  相似文献   

4.
The kinetic parameters at end-of-life of a material test reactor fuelled with low enriched uranium fuel were calculated. The reactor used for the study was the IAEA’s 10 MW benchmark reactor. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time and effective delayed neutron fraction. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It was observed that in comparison with the beginning-of-life values, at end-of-life, the neutron flux increased throughout the core, the prompt neutron generation time increased by 3.68% while the effective delayed neutron fraction decreased by 0.35%.  相似文献   

5.
The reactivity feedback coefficients at end-of-life of a material test reactor fuelled with low enriched uranium fuel were calculated. The reactor used for the study was the IAEA’s 10 MW benchmark reactor. Simulations were carried out to calculate the different reactivity feedback coefficients including Doppler feedback coefficient, reactivity coefficient for change of water temperature and reactivity coefficient for change of water density. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It was observed that the magnitude of all the reactivity feedback coefficients increased at end of life of the reactor by almost 2–5%.  相似文献   

6.
The effects of using high density low enriched uranium on the dynamics of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different properties affecting the reactor in different ways, fuels U–Mo (9w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to determine the reactor performance under reactivity insertion and loss of flow transients. Nuclear reactor analysis code PARET was employed to carry out these calculations. It is observed that during the fast reactivity insertion transient, the maximum reactor power is achieved and the energy released till the power reaches its maximum increases by 45% and 18.5%, respectively, as uranium density increases from 6.57 gU/cm3 to 8.90 gU/cm3. This results in increased maximum temperatures of fuel, clad and coolant outlet, achieved during the transient, by 27.7 K, 19.7 K and 7.9 K, respectively. The time required to reach the peak power decreases. During the slow reactivity insertion transient, the maximum reactor power achieved increases slightly by 0.3% as uranium density increases from 6.57 gU/cm3 to 8.90 gU/cm3 but the energy generated till the power reaches its maximum decreases by 5.7%. The temperatures of fuel, clad and coolant outlet remain almost the same for all types of fuels. During the loss of flow transients, no appreciable difference in the power and temperature profiles was observed and the graph plots overlapped each other.  相似文献   

7.
The effects of using high density low enriched uranium on the neutronic parameters of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different cross-sections affecting the reactor in different ways, therefore fuels U–Mo (9 w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time, effective delayed neutron fraction and feedback coefficients including Doppler feedback coefficient, and reactivity coefficients for change of water density and temperature. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the excess reactivity at the beginning of life does not increase as the uranium density of fuel. Both the prompt neutron generation time and the effective delayed neutron fraction decrease as the uranium density increases. The absolute value of Doppler feedback coefficient increases while the absolute values of reactivity coefficients for change of water density and temperature decrease.  相似文献   

8.
9.
The effect of high-density fuel loading on the criticality of low enriched uranium fueled material test reactors was studied using the standard reactor physics simulation codes WIMS-D/4 and CITATION. Three strategies were considered to increase the fuel loading per plate: (1) by substituting the high-density fuel in place of low-density fuel keeping meat thickness and water channel width constant, (2) by substituting the high-density fuel in place of low-density fuel keeping fuel meat thickness fixed and optimizing the water channel width between the fuel plates and (3) by increasing the fuel meat thickness of fixed density fuel and optimizing the water channel width between the fuel plates. The fuel requirements for critical and first high power cores were determined in each case for higher fuel loadings per plate. It has been found that in the first case, core volume reduces with increasing fuel loadings per plate but requirement of fuel also increases. In the second and third case, core volume as well as fuel requirement decreases with increasing fuel loadings per plate. However in the second case, core volume reduces more rapidly than in case 3 with increasing fuel loadings per plate. Employing standard computer code PARET, steady state thermal hydraulic analysis of all these cores was performed. The thermal hydraulic analysis reveals that cores with higher densities and fixed water channel width are better from thermal hydraulic point of view and have fuel and clad temperatures within the acceptable limits. But the core with higher densities and optimum water channel width is a better choice in terms of core compaction, less 235U loading and higher neutron fluxes. Finally, the core was compacted in three steps to exploit the benefits of both types of cores. The strategy resulted in 36% reduction in the core volume, 50% increase in thermal neutron flux for irradiation and isotope production and a slight reduction in 235U loading. All this was achieved with acceptable peak clad and peak fuel centerline temperatures.  相似文献   

10.
The reactivity feedback coefficients of a material test research reactor fueled with high-density U3Si2 dispersion fuels were calculated. For this purpose, the low-density LEU fuel of an MTR was replaced with high-density U3Si2 LEU fuels currently being developed under the RERTR program. Calculations were carried out to find the fuel temperature reactivity coefficient, moderator temperature reactivity coefficient and moderator density reactivity coefficient. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the average values of fuel temperature reactivity feedback coefficient, moderator temperature reactivity coefficient and moderator density reactivity coefficient from 20 °C to 100 °C, at the beginning of life, followed the relationships (in units of Δk/k × 10−5 K−1) −2.116 − 0.118 ρU, 0.713 − 37.309/ρU and −12.765 − 34.309/ρU, respectively for 4.0 ≤ ρU (g/cm3) ≤ 6.0.  相似文献   

11.
《Annals of Nuclear Energy》2002,29(10):1253-1259
The reactivity worth of the thermal column of a typical MTR type swimming pool research reactor using low enriched uranium fuel has been determined by modeling the core using standard computer codes. It was also measured experimentally by operating the reactor in the stall and open ends. The calculated value of the reactivity worth of the thermal column is about 14% greater than the experimentally determined value.  相似文献   

12.
Nuclear-pumped laser can directly convert nuclear energy to optical energy. A coupled reactor which consists of two pulse cores with highly enriched metallic uranium and a subcritical thermal laser module with highly enriched metallic uranium is one of the reactors for nuclear-pumped laser. In this paper, criticality analysis of a coupled reactor which consists of pulse cores with 20% enriched metallic uranium and a subcritical thermal laser module with 20% enriched metallic uranium was performed by Monte Carlo calculation. The result of criticality analysis showed the following three points. First, a coupled reactor with 20% enriched metallic uranium can achieve criticality. Second, using eight pulse cores in axial direction is effective to achieve flattened axial power distribution in the laser module. Third, less than 20% of the energy released from fissions in the whole coupled reactor has the possibility to be converted to optical energy for a coupled reactor with 100% enriched uranium, and less than 7% for a coupled reactor with 20% enriched uranium.  相似文献   

13.
Even a zero-power reactor core containing highly enriched uranium has a weak neutron source inherent in uranium 235, and consequently, a neutron counter placed closely to the core without external neutron source registers a certain counting rate. The study of the counting is very important for zero-power reactor physics experiments with a high precision. In this experimental study, first, at a shutdown state of the UTR-Kinki reactor without start-up neutron source, a pulse height distribution of output signals from a neutron proportional counter was measured to confirm that these signals resulted from neutron detections. At several subcritical states of the UTR, then, the Feynman-α analysis was carried out to confirm that the neutrons detected by the counter must be fission neutrons multiplied by fission chain reactions. The correlation amplitude measured in the Feynman-α analysis was much higher than that measured in a previous drive by start-up source. Further, it was also confirmed that the subcriticality dependence of neutron counting rate followed the source multiplication formula. This feature indicated that the one-point model was very successful in the subcritical range including the shutdown state.  相似文献   

14.
《Journal of Nuclear Materials》2003,312(2-3):163-173
A533B steels containing 0.12% and 0.16% Cu were irradiated to 3×1023 and 6×1023 n/m2 (E>1 MeV) at 290 °C in a pressurized water reactor (PWR) and a material test reactor (MTR). Microstructural changes were examined using atom probe, small angle neutron scattering, field emission gun scanning transmission electron microscopy and post-irradiation annealing (PIA) coupled with positron annihilation (PA) and hardness testing (Hv). Cu rich precipitates had a Cu enriched core with surrounding Ni, Mn and Si rich region and the atomic composition was Fe–(7–16)Cu–(2–8)Mn–(0–4)Ni–(0–4)Si. The size and number density of Cu rich precipitates and the residual Cu concentration in matrix were almost saturated at above 3×1023 n/m2. Low flux irradiation in PWR produced slightly larger precipitates of a lower density with a higher Cu concentration in the precipitates. PIA (PA and Hv) examination showed that vacancy type matrix defects after PWR irradiation were more stable and more effective for hardening than those after MTR irradiation.  相似文献   

15.
Nuclear safety analysis remains of crucial importance for both the design and the operation of nuclear reactors. Safety analysis usually entails the simulation of several selected postulated accidents, which can be divided into two main categories, namely reactivity insertion accident (RIA) and loss of flow accident (LOFA). In this paper, thermal-hydraulic simulations of fast LOFA accident were carried out on the new core configuration of the material test research reactor NUR. For this purpose, the nuclear reactor analysis PARET code was used to determine the reactor performance by calculating the reactor power, the reactivity and the temperatures of different components (fuel, clad and coolant) as a function of time. It was observed that during the transient the maximum clad temperature remained well below the critical temperature limit of 110 °C, and the maximum coolant temperature did not exceed the onset of nucleate boiling point of 120 °C. It is concluded that the reactor can be operated at full power level with sufficient safety margins with regard to such kind of transients.  相似文献   

16.
Burnup calculations with SARC system were carried out to analyse the effects of plutonium build-up on criticality of MTR type research reactor PARR-1 using several WIMSD libraries based on evaluated nuclear data files ENDFB-VI.8, JEF-2.2, JEFF-3.1 and JENDL-3.2. For equilibrium core of the reactor, it was found that a net reactivity of more than 3.5 mk is induced due to build-up of plutonium isotopes during depletion. The plutonium credit amounts to 3% of the length of equilibrium cycle. From the analysis of actinide production in the core during burnup, it was observed that in most of the cases, the amounts of actinides obtained using various cross section libraries agree fairly with each other, however, significant differences were observed for 238Pu, 241Pu, 242mAm, 243Am, 242Cm and 244Cm for some libraries. The actinide chain analysis was conducted to investigate the reasons for the observed differences.  相似文献   

17.
Improved spatial detector resolution is exploited for engineering and geology, e.g., for the investigation of boron distribution in steel, consolidated aspects of building materials, and grain analysis in feldspar. The strengths and limitations of the upgraded instrument are evaluated in the context of these projects. First promising results have been obtained and will extend the range of applications for the neutron imaging beam-line at the Atomic Institute in Vienna.  相似文献   

18.
《Annals of Nuclear Energy》2002,29(4):477-488
One dimensional transport theory lattice code wims-d/4 and three dimensional diffusion theory code citation have been used to study the effect of fuel loading on critical cores of low enriched uranium (LEU) fuelled material testing reactors (MTRs). The fuel loading in a fuel element was varied by changing the fuel density in the fuel meat. In order to keep the reactor critically moderated, the optimal coolant channel width for a given fuel loading was calculated. For the purpose of optimization, the group constants D, Σa and νΣf, and infinite multiplication factor (k) were calculated as a function of coolant channel width using wims-d/4. An increase in 235U loading per fuel plate results in an increase in the optimal coolant channel width and k. The calculated values were found to be in good agreement with the typical design of MTR. citation was then used to determine the critical cores for different fuel loading with optimized fuel dimensions. Both critical mass and volume were found to decrease with an increase in the fuel loading. The criticality studies of Pakistan research reactor-1 (PARR-1) are in good agreement with the predictions.  相似文献   

19.
The kinetic parameters of a material test research reactor using stainless steel-316 and zircaloy-4 as clad were calculated. For this purpose, the aluminum clad of an MTR was replaced separately with stainless steel-316 and zircaloy-4. Calculations were carried out to find the core excess reactivity, neutron flux spectrum, prompt neutron generation time and effective delayed-neutron fraction. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It was observed that at the beginning of life, the excess reactivity was maximum at 0.054110 Δk/k when zircaloy-4 was used as clad while it was minimum at ?0.365650 Δk/k when stainless steel-316 was the clad as compared to 0.017945 Δk/k for aluminum. The thermal neutron flux at the mid of the central flux trap increased by 59.9% and 12.5% for stainless steel and zircaloy-4 clads, respectively, from the flux of the original aluminum clad. The prompt neutron generation time was maximum at 45.36 μs when stainless steel-316 was the clad while it was minimum at 44.03 μs for the original aluminum clad. The effective delayed-neutron fraction was maximum at 0.007185 for the original aluminum clad while it was minimum at 0.007078 for stainless steel clad.  相似文献   

20.
The reactivity feedback coefficients of a material test research reactor using stainless steel-316 and zircaloy-4 as clad were calculated. For this purpose, the aluminum clad of an MTR was replaced with stainless steel-316 and zircaloy-4. Calculations were carried out to find the fuel temperature reactivity feedback coefficient, clad temperature reactivity feedback coefficient, moderator temperature reactivity feedback coefficient and moderator density reactivity feedback coefficient. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the average values of fuel temperature reactivity feedback coefficient, moderator temperature reactivity coefficient and moderator density reactivity coefficient from 38 °C to 50 °C, at the beginning of life, were maximum in magnitude for stainless steel-316 cladded fuel, followed by aluminum and least for the zircaloy-4 cladded fuel. The fuel temperature feedback coefficient increased in magnitude by 47.37% for stainless steel-316 and decreased by 4.72% for zircaloy-4 clad. The moderator temperature feedback coefficient increased in magnitude by 60.41% for stainless steel-316 and decreased by 3.03% for zircaloy-4 clad, while the moderator density feedback coefficient showed an increase in magnitude of 59.18% for stainless steel-316 and a decrease of 7.63% for zircaloy-4 clad. Zircaloy-4 gave a positive value for clad temperature feedback coefficient, while the others two did not have any clad temperature feedback coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号