首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 750 毫秒
1.
海洋沉积物中由微生物硫酸盐还原作用(MSR)驱动的碳、硫耦合作用及甲烷消耗,是影响全球碳、硫循环和气候变化的关键生物地球化学过程。准确认识微生物硫酸盐还原代谢过程及其环境影响因子,是探究MSR驱动的碳、硫循环及生态环境效应的重要基础。沉积物孔隙水中硫酸盐的硫、氧同位素组成是揭示MSR过程及其驱动的硫循环的重要方法。本文从细胞内代谢途径和胞外硫循环过程角度,厘清影响孔隙水硫酸盐硫、氧同位素组成的硫的生物地球化学过程,阐述其在示踪有机质驱动和甲烷驱动的硫酸盐还原过程类型及“隐秘”硫循环的意义,为探究微生物硫酸盐还原作用在地球表层环境演化中的作用提供新启示。  相似文献   

2.
对国际地球化学大会Goldschmidt 2011的基本情况、5个大会主题报告和23个分会报告作了较详细介绍与评述。这5个大会主题报告是:地幔中的挥发组分对板内岩浆作用的影响,地球深部挥发组分的循环:从远古到现代,利用地球化学信息研究末次冰川消退及其对河流的影响,外星大气:一个由热到可居住的世界,深海中的微生物群落与甲烷氧化作用。23个分会报告包括:宇宙化学,行星形成;早期地球:从地核到大气;地球深部动力学及其演化;从地幔至地壳:洋脊与板内岩浆活动;大陆壳的形成及演化;循环:俯冲,地幔楔与弧火山作用;地球环境演化;从纳米到大陆尺度界面与界面过程;火山与自然灾害地球化学;地球资源:能源;地球资源:矿;气候变化;大气气溶胶的源、汇及影响;风化、气候、构造与地表过程;海洋大气:过去与现在;人类活动产生的地球化学影响;生物地球化学:从微生物到宏观与循环;分析技术前沿;计算地球化学前沿;矿物学与矿物物理学前沿;水文地球化学与全球水资源可持续发展;一般主题;特别议题。文章重点阐述了国际地球化学目前的研究现状、热点领域、未来发展方向三个方面。对生物地球化学的研究现状与发展趋势作了专题评述。  相似文献   

3.
微生物地球化学是研究微生物在生物地球化学循环中作用机理的一门新兴边缘科学。它作为独立学科被人们承认,不过是近一二十年的事。然而,它未来的发展前景却是不可低估的。自然界中,生物通过自身的生命活动,一方面将其所需的各种无机化学元素合成为有机物,另一方面又能将这些有机物分解成无机组分并输送圆自然界。由此,化学元素不断地从非生命物质转变成生命物质,再从生命物质变成非生命物质。构成了地球上的生物地球化学循环。微生物在此循环中起着极为重要的纽带作用。如果没有微生物的参与,自然界的物质循环将无法进行,生命将得不到更替繁衍。因而,地球化学过程与微生物作用休戚相关;二者间的联系越来越被人们关注。  相似文献   

4.
极端环境下的微生物及其生物地球化学作用   总被引:7,自引:1,他引:6  
陈骏  连宾  王斌  H.H.TENG 《地学前缘》2006,13(6):199-207
极端微生物是地球生物圈的重要组成部分。极端微生物的地球化学定位在微生物学与地球化学以及一些相关学科的交叉点上,最近10年已经发展成为地质生物学研究的热门领域。对极端微生物的研究不仅有助于回答生命起源、生命极限、生命本质甚至其他生命形式等生命科学问题,而且其生物地球化学作用在地球系统科学研究中具有重大科学研究价值,对揭示生物圈与地圈协同演化的奥秘、认识生命与环境相互作用规律及地球的化学演化提供重要证据。总结了嗜热菌、嗜冷菌、嗜酸菌、嗜碱菌、嗜压菌、嗜盐菌以及抗辐射菌的主要类群,论述了极端微生物适应环境的机制,探讨了极端微生物的生物地球化学意义。作者预测未来将会在生物标志化合物研究、同位素地球化学分析和分子生物学综合研究的基础上协同推进极端微生物地球化学学科的发展。  相似文献   

5.
大气沉降对海洋初级生产过程与氮循环的影响研究进展   总被引:4,自引:1,他引:3  
大气沉降通过为海洋提供外源性氮、磷和铁等微量元素,可显著影响海洋氮、碳循环过程,并产生气候效应。一方面促进海洋初级生产和生物固氮,增强海洋吸收二氧化碳的能力;另一方面影响海洋氮、碳循环路径,增加海洋生物源气溶胶排放量,间接影响气候变化。由于大气沉降对海洋生态系统及气候变化的重要影响,相关科学问题已成为海洋科学与大气科学交叉研究的热点,被多个国际研究计划列为核心研究内容。在大气污染物排放持续增加与沙尘事件频发的背景下,大气沉降对我国东部陆架海(黄海、东海)及其邻近西北太平洋碳、氮循环过程的影响日趋增强,因此该海区已成为大气沉降及其气候影响研究的代表性海域。结合分子生物学和实验生态学手段理解大气沉降影响下的海洋初级生产过程,利用同位素示踪技术研究大气沉降对海洋氮循环的影响,以及获得大气沉降影响下海洋生物源气溶胶排放的观测证据将是未来研究的重点方向。  相似文献   

6.
海洋硅循环是海洋生物地球化学循环的关键过程之一,对调控全球二氧化碳浓度、海洋酸碱度和多种元素(氮、磷、铁、铝等)的循环具有重要作用。在当今气候变化和人类活动影响日益增强的背景下,硅循环与“生物泵”及碳循环的紧密联系,是其成为地球科学领域研究热点的主要原因。海洋中硅的外部来源主要为河流、地下水、大气沉降、海底玄武岩风化作用和海底热液输送5个途径,在全球气温变暖趋势的影响下,极地冰川融化成为高纬度海域不可忽视的硅源。生物硅在沉积物中的埋藏、硅质海绵和生物硅的反风化作用是重要的海洋硅移除过程。海洋硅循环过程复杂,受生物(生物吸收、降解)、物理(吸附、溶解)和化学(矿化分解和反风化作用)多重因素的影响,针对海洋硅循环关键过程的研究有助于综合评估海洋硅的“源-汇”和收支。本文总结了海洋硅循环的主要过程及海洋硅的收支,根据国际和国内研究现状讨论了当前海洋硅循环研究中面临的主要问题和挑战。现有研究成果显示,海洋硅的外源输入和输出通量比以往的评估分别增加了2.4和2.2倍。在短时间尺度内(<8 ka),全球海洋中硅的收支大致平衡,海洋硅循环基本处于稳定状态。气候变化和人类活动导致河流输送至陆架边缘海的硅通量发生变化,可能影响硅藻等海洋浮游植物种群结构,是未来海洋硅循环研究需要关注的问题之一。陆架边缘海较高沉积速率和强烈的反风化作用提高了该区域生物硅的埋藏效率,准确评估该区域生物硅的埋藏通量仍是亟须解决的难题。目前的研究评估了全球海洋浮游硅藻、硅质海绵以及放射虫生产力,而海洋底栖硅藻生产力的贡献受到忽视,未来需要关注底栖硅藻对生物硅的贡献及其在海洋硅的生物地球化学过程中的作用。  相似文献   

7.
微生物地球化学及其研究进展   总被引:11,自引:1,他引:10  
本文阐述了微生物地球化学的发展历程及微生物地球化学近期的研究进展。微生物可以促进许多地质地球化学过程,微生物地球化学作用主要表现在对岩石和矿物风化、元素迁移和聚集、有机质降解以及矿床形成等方面;还表现在部分控制大气成分,参与有机物和无机物循环并影响其全球分布,从而对地球形成以来物质在上部岩石圈、水圈和大气圈中的分布起到了重要的控制作用。微生物地球化学的成果已经从根本上修正了地球科学的核心观点,它的发展必将对地球科学和生命科学的发展起到重要的促进作用。  相似文献   

8.
陆地生态系统碳循环、氮循环和水循环是生态系统生态学和全球变化科学研究长期被关注的三大物质循环,它们表征着全球、区域及典型生态系统的能量流动、养分循环和水循环。然而,自然界的生态系统碳循环、氮循环和水循环是相互联动、不可分割的耦合体系,在生态学、生理学、生物化学等方面受多个生物、物理、化学和生物学过程的调节和控制。本文在综合论述陆地生态系统碳-氮-水耦合循环研究的理论和实践意义的基础上,探讨了陆地生态系统碳-氮-水耦合循环的关键过程,提出该研究领域的基本科学问题,重点分析了植被-大气、土壤-大气和根系-土壤3个界面上碳、氮、水交换的生物物理过程,典型生态系统碳-氮-水耦合循环的生物学化学过程,制约典型生态系统碳-氮-水循环耦合关系的生态系统生态学机制,以及制约生态系统碳-氮-水循环空间格局耦联关系的生物地理生态学机制。在现有科学研究的基础上,构建了陆地生态系统碳-氮-水耦合循环机制的逻辑框架系统,讨论了开展陆地生态系统碳-氮-水耦合循环研究的主要技术途径与方法。  相似文献   

9.
微生物驱动的碳循环是热泉生境各元素生物地球化学循环的核心部分.研究热泉生境驱动碳循环微生物及其代谢机制,既有助于揭示地球早期生命起源与演化、探讨地外生命,又具有重大的生物工程应用意义.综合阐述了热泉生态系统驱动碳循环的功能微生物在系统发育学上的分布、功能基因的相对丰度和活性、功能群与环境因子(如温度、pH)的响应关系,旨在了解热泉中驱动碳循环微生物的研究现状并为其后续研究提供理论基础.  相似文献   

10.
章程  汪进良  蒲俊兵 《地球学报》2015,36(2):197-203
昼夜动态变化的研究有助于揭示水体中相对快速的生物地球化学过程,同时也有助于判别影响水化学变化的主导因子。本文选择由地下水补给且富含水生植物的典型河流,开展高分辨率水文地球化学监测和高频率水样取样工作,分析了水化学的昼夜动态变化特征并对比其沿流程的变化,探讨了水化学昼夜循环产生的生物地球化学控制机理。结果表明,河流水化学离子成分多呈现出昼夜动态变化的特点,Ca2+、DIC白天下降幅度达22.4%,昼夜循环主要受水生植物光合作用控制,但不同成分沿流程具有不同的变化规律,存在Ca2+、DIC和营养元素成分的流失。研究河段硝酸盐含量较高(农业活动产生的面源氮补给),沿流程有减小趋势,受生物同化作用控制,白天小幅升高夜间回落的昼夜动态变化,主要受硝化作用过程控制。DOC与TOC含量小时数据呈现快速波动特点,白天上升夜间下降,受生物代谢活动控制,DOC的日变化幅度可相差1倍。岩溶区地表河流水化学昼夜动态变化规律与生物地球化学过程研究,不仅能揭示水化学无机组分昼夜循环的控制因素,也有助于更好理解岩溶作用过程中无机碳与有机碳的快速转换特性,对提高岩溶碳汇的估算精度有重要意义。  相似文献   

11.
硅的生物地球化学循环研究进展   总被引:2,自引:0,他引:2  
生命元素硅在陆地生态系统和水生生态系统中都扮演着重要的角色。它的生物地球化学循环与全球碳循环和全球气候交化密切相关。因此,近年来逐渐成为研究的热点。本文概述了近年来国内外有关硅的生物地球化学循环的研究进展,包括陆地和海洋中硅的生物地球化学循环过程及人类活动对硅循环的影响等方面,指出日前研究中存在的问题,展望了研究的重点。  相似文献   

12.
全球生物地球化学循环研究的进展   总被引:10,自引:0,他引:10  
简要介绍了全球元素生物地球化学循环研究的新进展。首先说明几十年来生物地球化学循环研究重点的转变,其次分析了当前研究的特点,这就是多层次地(时空及生态系统)进行实验和数学模拟并外推至全球,比经典的循环研究要细致得多。经典研究往往只是将定位点上的结果简单地外推到区域甚至全球。最后有选择地阐述了生物地球化学循环各领域(源、汇、转化过程、测量方法、模式等)内的发展趋势与热点,其中主要有农业生态系统含碳、氮痕量气体的源、遗漏的碳汇、碳、氮、硫、磷间的耦合作用、同位素丰度比及指示物的应用和氧化亚氮和甲烷释放模式。  相似文献   

13.
Marine stable nitrogen isotope containing much key biogeochemical information, is an important way in identifying marine nitrogen sources and understanding the marine nitrogen cycles. These isotopic signals can be preserved in marine sediments and used to trace the marine biogeochemical cycles and environment changes during geological history. Studies in recent decades have illustrated the key role of nitrogen fixation and denitrification. Because of the spatiotemporal variability and the complexity of ocean processes and nitrogen sources in the marine environment, we need to combine the modern observations with geological records, integrate oceanography, biology, and geology, and consider the hydrological environment, geological processes and climate changes, to understand the coupling between the ocean nitrogen cycle, climate and environmental changes.  相似文献   

14.
Isotopes in pyrogenic carbon: A review   总被引:1,自引:0,他引:1  
Pyrogenic carbon (PC; also known as biochar, charcoal, black carbon and soot) derived from natural and anthropogenic burning plays a major, but poorly quantified, role in the global carbon cycle. Isotopes provide a fundamental fingerprint of the source of PC and a powerful tracer of interactions between PC and the environment. Radiocarbon and stable carbon isotope techniques have been widely applied to studies of PC in aerosols, soils, sediments and archaeological sequences, with the use of other isotopes currently less developed. This paper reviews the current state of knowledge regarding (i) techniques for isolating PC for isotope analysis and (ii) processes controlling the carbon (13C and 14C), nitrogen, oxygen, hydrogen and sulfur isotope composition of PC during formation and after deposition. It also reviews the current and potential future applications of isotope based studies to better understand the role of PC in the modern environment and to the development of records of past environmental change.  相似文献   

15.
《Organic Geochemistry》2011,42(12):1529-1539
Pyrogenic carbon (PC; also known as biochar, charcoal, black carbon and soot) derived from natural and anthropogenic burning plays a major, but poorly quantified, role in the global carbon cycle. Isotopes provide a fundamental fingerprint of the source of PC and a powerful tracer of interactions between PC and the environment. Radiocarbon and stable carbon isotope techniques have been widely applied to studies of PC in aerosols, soils, sediments and archaeological sequences, with the use of other isotopes currently less developed. This paper reviews the current state of knowledge regarding (i) techniques for isolating PC for isotope analysis and (ii) processes controlling the carbon (13C and 14C), nitrogen, oxygen, hydrogen and sulfur isotope composition of PC during formation and after deposition. It also reviews the current and potential future applications of isotope based studies to better understand the role of PC in the modern environment and to the development of records of past environmental change.  相似文献   

16.
Trace elements serve important roles as regulators of ocean processes including marine ecosystem dynamics and carbon cycling. The role of iron, for instance, is well known as a limiting micronutrient in the surface ocean. Several other trace elements also play crucial roles in ecosystem function and their supply therefore controls the structure, and possibly the productivity, of marine ecosystems. Understanding the biogeochemical cycling of these micronutrients requires knowledge of their diverse sources and sinks, as well as their transport and chemical form in the ocean.Much of what is known about past ocean conditions, and therefore about the processes driving global climate change, is derived from trace-element and isotope patterns recorded in marine deposits. Reading the geochemical information archived in marine sediments informs us about past changes in fundamental ocean conditions such as temperature, salinity, pH, carbon chemistry, ocean circulation and biological productivity. These records provide our principal source of information about the ocean's role in past climate change. Understanding this role offers unique insights into the future consequences of global change.The cycle of many trace elements and isotopes has been significantly impacted by human activity. Some of these are harmful to the natural and human environment due to their toxicity and/or radioactivity. Understanding the processes that control the transport and fate of these contaminants is an important aspect of protecting the ocean environment. Such understanding requires accurate knowledge of the natural biogeochemical cycling of these elements so that changes due to human activity can be put in context.Despite the recognised importance of understanding the geochemical cycles of trace elements and isotopes, limited knowledge of their sources and sinks in the ocean and the rates and mechanisms governing their internal cycling, constrains their application to illuminating the problems outlined above. Marine geochemists are poised to make significant progress in trace-element biogeochemistry. Advances in clean sampling protocols and analytical techniques provide unprecedented capability for high-density sampling and measurement of a wide range of trace elements and isotopes which can be combined with new modelling strategies that have evolved from the World Ocean Circulation Experiment (WOCE) and Joint Global Ocean Flux Study (JGOFS) programmes. A major new international research programme, GEOTRACES, has now been developed as a result of community input to study the global marine biogeochemical cycles of trace elements and their isotopes. Here, we describe this programme and its rationale.  相似文献   

17.
Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon (Si), carbon (C), and other nutrients. However, river damming affects the water flow and biogeochemical cycles of Si, C, and other nutrients through biogeochemical interacting processes. In this review, we first summarize the current understanding of the effects of river damming on the processes of biogeochemical Si cycle, especially the source, composition, and recycling process of biogenic silica (BSi). Then, we introduce dam impacts on the cycles of C and some other nutrients. Dissolved silicon in rivers is mainly released from phytolith dissolution and silicate weathering. BSi in suspended matter or sediments in most rivers mainly consists of phytoliths and mainly originates from soil erosion. However, diatom growth and deposition in many reservoirs formed by river interception may significantly increase the contribution of diatom Si to total BSi, and thus significantly influence the biogeochemical Si, C, and nutrient cycles. Yet the turnover of phytoliths and diatoms in different rivers formed by river damming is still poorly quantified. Thus, they should be further investigated to enhance our understanding about the effects of river damming on global biogeochemical Si, C and nutrient cycles.  相似文献   

18.
河流可溶性有机氮研究进展   总被引:3,自引:0,他引:3  
河流DON不但记录了流域侵蚀的过程,还记录着DON的生物地球化学信息,河流可溶性有机氮其流动是流域生态系统氮循环的重要组成部分。本文综述了河流可溶性有机氮的性质、来源、环境效应、时空变化以及同位素技术应用的最新研究进展,并指出今后河流DON的研究方向。  相似文献   

19.
磷是生命体的必需元素,也是粮食生产的重要限制因素。磷的生物地球化学循环不仅调控着海洋的初级生产力,而且影响着全球气候系统,并决定着磷矿资源的形成和分布,与地球上生命的生存繁衍息息相关。当前“地球系统科学”理论将大气圈、水圈、岩石圈(地壳和上地幔)和生物圈等子系统有机整合,为研究磷的生物地球化学循环提供了更加广阔的视野。基于已有研究,结合“地球系统科学”理论观点,针对磷的生物化学循环获得了以下重要认识: 磷在地质历史时期的演化决定了现今磷在全球范围内(陆地生态系统与海洋生态系统)的循环模式;人类的工业和农业活动作为重要的地质营力,改变了磷的生物地球化学循环过程,造成了磷矿枯竭的资源危机及水体富营养化的环境问题;解决磷短缺的资源危机问题和磷过剩的环境污染问题的关键在于调控引起这些问题的生物地球化学循环过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号