首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magneto-transport and cyclotron resonance measurements were made to determine directly the density, mobility, and the effective mass of the charge carriers in a high-performance 0.15-μm gate In0.52 Al0.48As/In0.53Ga0.47As high-electron-mobility transistor (HEMT) at low temperatures. At the gate voltage VG=0 V, the carrier density n g under the gate is 9×1011 cm-2, while outside of the gate region ng=2.1×1012 cm-2. The mobility under the gate at 4.2 K is as low as 400 cm2/V-s when VG<0.1 V and rapidly approaches 11000 cm2/V-s when VG>0.1 V. The existence of this high mobility threshold is crucial to the operation of the device and sets its high-performance region in VG>0.1 V  相似文献   

2.
叶伟  崔立堃  常红梅 《电子学报》2019,47(6):1344-1351
具有高介电常数的栅绝缘层材料存在某种极化及耦合作用,使得ZnO-TFTs具有高的界面费米能级钉扎效应、大的电容耦合效应和低的载流子迁移率.为了解决这些问题,本文提出了一种使用SiO2修饰的Bi1.5Zn1.0Nb1.5O7作为栅绝缘层的ZnO-TFTs结构,分析了SiO2修饰对栅绝缘层和ZnO-TFTs性能的影响.结果表明,使用SiO2修饰后,栅绝缘层和ZnO-TFTs的性能得到显著提高,使得ZnO-TFTs在下一代显示领域中具有非常广泛的应用前景.栅绝缘层的漏电流密度从4.5×10-5A/cm2降低到7.7×10-7A/cm2,粗糙度从4.52nm降低到3.74nm,ZnO-TFTs的亚阈值摆幅从10V/dec降低到2.81V/dec,界面态密度从8×1013cm-2降低到9×1012cm-2,迁移率从0.001cm2/(V·s)升高到0.159cm2/(V·s).  相似文献   

3.
Thin-film transistors (TFTs) have been made that incorporate a thin (~380 Å), high-quality plasma-enhanced chemical vapor deposition (PECVD) SiO2 film as the gate dielectric in a staggered-inverted structure. Threshold voltages and mobilities have been found to be in the range of 1.6-2.4 V and 0.20-0.25 cm2 V-1 s-1, respectively, where the exact values are dependent on the measurement technique used. Very low gate leakage currents (<10-11 A) were recorded when measured using a ramped I-V technique, even for electric fields as high as 5×106 V/cm  相似文献   

4.
High-performance inversion-type enhancement-mode n-channel In0.53Ga0.47As MOSFETs with atomic-layer-deposited (ALD) Al2O3 as gate dielectric are demonstrated. The ALD process on III-V compound semiconductors enables the formation of high-quality gate oxides and unpinning of Fermi level on compound semiconductors in general. A 0.5-mum gate-length MOSFET with an Al2O3 gate oxide thickness of 8 nm shows a gate leakage current less than 10-4 A/cm2 at 3-V gate bias, a threshold voltage of 0.25 V, a maximum drain current of 367 mA/mm, and a transconductance of 130 mS/mm at drain voltage of 2 V. The midgap interface trap density of regrown Al2O3 on In0.53Ga0.47As is ~1.4 x 1012/cm2 ldr eV which is determined by low-and high-frequency capacitance-voltage method. The peak effective mobility is ~1100 cm2 / V ldr s from dc measurement, ~2200 cm2/ V ldr s after interface trap correction, and with about a factor of two to three higher than Si universal mobility in the range of 0.5-1.0-MV/cm effective electric field.  相似文献   

5.
Electrical characteristics of Al/yttrium oxide (~260 Å)/silicon dioxide (~40 Å)/Si and Al/yttrium oxide (~260 Å)/Si structures are described. The Al/Y2O3/SiO2/Si (MYOS) and Al/Y2 O3/Si (MYS) capacitors show very well-behaved I-V characteristics with leakage current density <10-10 A/cm2 at 5 V. High-frequency C- V and quasistatic C-V characteristics show very little hysteresis for bias ramp rate ranging from 10 to 100 mV/s. The average interface charge density (Qf+Q it) is ~6×1011/cm2 and interface state density Dit is ~1011 cm-2-eV-1 near the middle of the bandgap of silicon. The accumulation capacitance of this dielectric does not show an appreciable frequency dependence for frequencies varying from 10 kHz to 10 MHz. These electrical characteristics and dielectric constant of ~17-20 for yttrium oxide on SiO2/Si make it a variable dielectric for DRAM storage capacitors and for decoupling capacitors for on-chip and off-chip applications  相似文献   

6.
In this paper, we present a model for silicon dioxide breakdown characterization, valid for a thickness range between 25 Å and 130 Å, which provides a method for predicting dielectric lifetime for reduced power supply voltages and aggressively scaled oxide thicknesses. This model, based on hole injection from the anode, accurately predicts QBD and tBD behavior including a fluence in excess of 107 C/cm2 at an oxide voltage of 2.4 V for a 25 Å oxide. Moreover, this model is a refinement of and fully complementary with the well known 1/E model, while offering the ability to predict oxide reliability for low voltages  相似文献   

7.
In this letter, we report that by employing the La2O3/SiOx interfacial layer between HfLaO (La = 10%) high- and Si channel, the Ta2C metal-gated n-MOSFETs VT can be significantly reduced by ~350 mV to 0.2 V, satisfying the low-Vy device requirement. The resultant n-MOSFETs also exhibit an ultrathin equivalent oxide thickness (~1.18 nm) with a low gate leakage (JG = 10 mA/cm2 at 1.1 V), good drive performance (Ion = 900 muA/mum at Isoff = 70 nA/mum), and acceptable positive-bias-temperature-instability reliability.  相似文献   

8.
Advances in lithography and thinner SiO2 gate oxides have enabled the scaling of MOS technologies to sub-0.25-μm feature size. High dielectric constant materials, such as Ta2O5 , have been suggested as a substitute for SiO2 as the gate material beyond tox≈25 Å. However, the Si-Ta 2O5 material system suffers from unacceptable levels of bulk fixed charge, high density of interface trap states, and low silicon interface carrier mobility. In this paper we present a solution to these issues through a novel synthesis of a thermally grown SiO2(10 Å)-Ta2O5 (MOCVD-50 Å)-SiO2 (LPCVD-5 Å) stacked dielectric. Transistors fabricated using this stacked gate dielectric exhibit excellent subthreshold behaviour, saturation characteristics, and drive currents  相似文献   

9.
For the first time, good thermal stability up to an annealing temperature of 1000degC has been demonstrated for a new TiN/Al2O3/WN/TiN capacitor structure. Good electrical performance has been achieved for the proposed layer structure, including a high dielectric constant of ~ 10, low leakage current of 1.2times10-7 A/cm2 at 1 V, and excellent reliability. A thin WN layer was incorporated into the metal-insulator-metal capacitor between the bottom TiN electrode and the Al2O3 dielectric suppressing of interfacial-layer formation at Al2 O3/TiN interfaces and resulting in a smoother Al2O3/TiN interface. This new layer structure is very attractive for deep-trench capacitor applications in DRAM technologies beyond 50 nm.  相似文献   

10.
High quality nanolaminate stacks consisting of five Al2O3-HfTiO layers with an effective dielectric constant of about 22.5 are reported. A dielectric constant for binary HfTiO thick films of about 83 was also demonstrated. The electrical characteristics of as-deposited structures and ones which were annealed in an O2 atmosphere at up to 950 degC for 5-10 min were investigated. Two types of gate electrodes: Pt and Ti were compared. The dielectric stack which was annealed up to 500 degC exhibits a leakage current density as small as ~1times10-4 A/cm2 at an electric of field 1.5 MV/cm for a quantum-mechanical corrected equivalent oxide thickness of ~0.76 nm. These values change to ~1times10-8 A/cm2 and 1.82 nm, respectively, after annealing at 950 degC  相似文献   

11.
Electrical and reliability properties of ultrathin HfO2 have been investigated. Pt electroded MOS capacitors with HfO2 gate dielectric (physical thickness ~45-135 Å and equivalent oxide thickness ~13.5-25 Å) were fabricated. HfO2 was deposited using reactive sputtering of a Hf target with O2 modulation technique. The leakage current of the 45 Å HfO2 sample was about 1×10-4 A/cm 2 at +1.0 V with a breakdown field ~8.5 MV/cm. Hysteresis was <100 mV after 500°C annealing in N2 ambient and there was no significant frequency dispersion of capacitance (<1%/dec.). It was also found that HfO2 exhibits negligible charge trapping and excellent TDDB characteristics with more than ten years lifetime even at VDD=2.0 V  相似文献   

12.
High-performance inversion-type enhancement- mode (E-mode) n-channel In0.65Ga0.35As MOSFETs with atomic-layer-deposited Al2O3 as gate dielectric are demonstrated. A 0.4-mum gate-length MOSFET with an Al2O3 gate oxide thickness of 10 nm shows a gate leakage current that is less than 5 times 10-6 A/cm2 at 4.0-V gate bias, a threshold voltage of 0.4 V, a maximum drain current of 1.05 A/mm, and a transconductance of 350 mS/mm at drain voltage of 2.0 V. The maximum drain current and transconductance scale linearly from 40 mum to 0.7 mum. The peak effective mobility is ~1550 cm2/V ldr s at 0.3 MV/cm and decreases to ~650 cm2/V ldr s at 0.9 MV/cm. The obtained maximum drain current and transconductance are all record-high values in 40 years of E-mode III-V MOSFET research.  相似文献   

13.
Ultra thin high-k zirconium oxide (equivalent oxide thickness 1.57 nm) films have been deposited on strained-Si/relaxed-Si0.8Ge0.2 heterolayers using zirconium tetra-tert-butoxide (ZTB) as an organometallic source at low temperature (<200 °C) by plasma enhanced chemical vapour deposition (PECVD) technique in a microwave (700 W, 2.45 GHz) plasma cavity discharge system at a pressure of 66.67 Pa. The trapping/detrapping behavior of charge carriers in ultra thin ZrO2 gate dielectric during constant current (CCS) and voltage stressing (CVS) has been investigated. Stress induced leakage current (SILC) through ZrO2 is modeled by taking into account the inelastic trap-assisted tunneling (ITAT) mechanism via traps located below the conduction band of ZrO2 layer. Trap generation rate and trap cross-section are extracted. A capture cross-section in the range of 10−19 cm2 as compared to 10−16 cm2 in SiO2 has been observed. The trapping charge density, Qot and charge centroid, Xt are also empirically modeled. The time dependence of defect density variation is calculated within the dispersive transport model, assuming that these defects are produced during random hopping transport of positively charge species in the insulating layer. Dielectric breakdown and reliability of the dielectric films have been studied using constant voltage stressing. A high time-dependent dielectric breakdown (TDDB, tbd > 1500 s) is observed under high constant voltage stress.  相似文献   

14.
The performance of polysilicon thin-film transistors (TFTs) formed by a 600°C process was improved using a two-layer gate insulator of photochemical-assisted vapor deposition (photo-CVD) SiO2 and atmospheric-pressure chemical vapor deposition (APCVD) SiO2. The photo-CVD SiO2, 100 Å thick, was deposited on polysilicon and followed by APCVD SiO2 of 1000 Å thickness. The TFT had a threshold voltage of 8.3 V and a field-effect mobility of 35 cm2/V-s, which were higher than those of the conventional TFT with a single-layer gate SiO2 of APCVD. Hydrogenation by hydrogen plasma was more effective for the new TFT than for the conventional device  相似文献   

15.
Yip  L.S. Shih  I. 《Electronics letters》1988,24(20):1287-1289
Films of yttrium oxide (Y2O3) were deposited on Si substrates from a Y2O3 target by RF magnetron sputtering. MIS capacitors in the form of Al and Y2O3 (400 Å)-Si were then fabricated. The leakage current density was about 10-6 A/cm2 at 1.3×106 V/cm, and the breakdown field of the films was about 2.75×106 V/cm. The dielectric constant of the sputtered Y2O3 was found to be about 12-12.7  相似文献   

16.
Excellent long term reliability InGaP/GaAs heterojunction bipolar transistors (HBT) grown by metalorganic chemical vapor deposition (MOCVD) are demonstrated. There were no device failures (T=10000 h) in a sample lot of ten devices (L=6.4 μm ×20 μm) under moderate current densities and high-temperature testing (Jc=25 kA/cm 2, Vce=2.0 V, Junction Temp =264°C). The dc current gain for large area devices (L=75 μm ×75 μm) at 1 kA/cm2 at a base sheet resistance of 240 ohms/sq (4×10 19 cm-3@700 Å) was over 100. The dc current gain before reliability testing (L=6.4 μm ×10 μm) at 0.8 kA/cm2 was 62. The dc current gain (0.8 kA/cm2) decreased to 57 after 10000 h of reliability testing. The devices showed an fT=61 GHz and fmax=103 GHz. The reliability results are the highest ever achieved for InGaP/GaAs HBT and these results indicate the great potential of InGaP/GaAs HBT for numerous low- and high-frequency microwave circuit applications. The reliability improvements are probably due to the initial low base current at low current densities which result from the low surface recombination of InGaP and the high valence band discontinuity between InGaP and GaAs  相似文献   

17.
The use of aluminum oxide as the gate insulator for low temperature (600°C) polycrystalline SiGe thin-film transistors (TFTs) has been studied. The aluminum oxide was sputtered from a pure aluminum target using a reactive N2O plasma. The composition of the deposited aluminum oxide was found to be almost stoichiometric (i.e., Al2O3), with a very small fraction of nitrogen incorporation. Even without any hydrogen passivation, good TFT performance was measured an devices with 50-nm-thick Al2O3 gate dielectric layers. Typically, a field effect mobility of 47 cm2/Vs, a threshold voltage of 3 V, a subthreshold slope of 0.44 V/decade, and an on/off ratio above 3×105 at a drain voltage of 0.1 V can be obtained. These results indicate that the direct interface between the Al2 O3 and the SiGe channel layer is sufficiently passivated to make Al2O3 a better alternative to grown or deposited SiO2 for SiGe field effect devices  相似文献   

18.
This paper describes a leading-edge 0.13 μm low-leakage CMOS logic technology. To achieve competitive off-state leakage current (I off) and gate delay (Td) performance at operating voltages (Vcc) of 1.5 V and 1.2 V, devices with 0.11 μm nominal gate length (Lg-nom) and various gate-oxide thicknesses (Tox) were fabricated and studied. The results show that low power and memory applications are limited to oxides not thinner than 21.4 Å in order to keep acceptable off-state power consumption at Vcc=1.2 V. Specifically, two different device designs are introduced here. One design named LP (Tox=26 Å) is targeted for Vcc=1.5 V with worst case Ioff <10 pA/μm and nominal gate delay 24 ps/gate. Another design, named LP1 (Tox=22 Å) is targeted for Vcc =1.2 V with worst case Ioff<20 pA/μm and nominal gate delay 27 ps/gate. This work demonstrates n/pMOSFETs with excellent 520/210 and 390/160 μA/μm nominal drive currents at Vcc for LP and LP1, respectively. Process capability for low-power applications is demonstrated using a CMOS 6T-SRAM with 2.43 μm2 cell size. In addition, intrinsic gate-oxide TDDB tests of LP1 (T ox=22 Å) demonstrate that gate oxide reliability far exceeding 10 years is achieved for both n/pMOSFETs at T=125°C and V cc=1.5 V  相似文献   

19.
High performance enhancement mode InP MISFET's have been successfully fabricated by using the sulfide passivation for lower interface states and with photo-CVD grown P3N5 film used as gate insulator. The MISFET's thus fabricated exhibited exhibited pinch-off behavior with essentially no hysteresis. Furthermore the device showed a superior stability of drain current. Specifically under the gate bias of 2 V for 104 seconds the room temperature drain current was shown to reduce from the initial value merely by 2.9% at the drain voltage of 4 V. The effective electron mobility and extrinsic transconductance are found to be about 2300 cm 2/V·s and 2.7 mS/mm, respectively. The capacitance-voltage characteristics of the sulfide passivated InP MIS diodes show little hysteresis and the minimum density of interface trap states as low as 2.6×1014/cm2 eV has been attained  相似文献   

20.
The dielectric properties of the amorphous BaSm2Ti4O12 (BSmT) film with various thicknesses were investigated to evaluate its potential use as a metal-insulator-metal (MIM) capacitor. An amorphous 35-nm-thick BSmT film grown at 300 degC exhibited a high capacitance density of 9.9 fF/mum2 at 100 kHz and a low leakage current density of 1.790 nA/cm2 at 1 V. The quadratic and linear voltage coefficients of capacitance of the film were 599 ppm/V2 and -81 ppm/V at 100 kHz, respectively. The temperature coefficient of capacitance of the film was also low about 236 ppm/degC at 100 kHz. These results confirmed the suitability of the amorphous BSmT film as a high-performance MIM capacitor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号