首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation, fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore, without the need to design the residual evaluation functions and thresholds, the residual intervals generated by the interval observers are used directly for FD decision. Finally, simulation results are presented for showing the effectiveness and superiority of the proposed method.  相似文献   

2.
This paper is concerned with the synthesis of delay-scheduled state-feedback controllers which stabilize linear systems with time-varying delays. In this framework, it is assumed that the delay is approximately known in real-time and used in the controller in a scheduling fashion. First, a new model transformation turning a time-delay system into an uncertain LPV system is introduced. Using this transformation, a new delay-dependent stability test based on the so-called full block -procedure is developed and from this result, a new delay-dependent stabilization result is derived. Since the resulting LMI conditions depend polynomially on the parameters, a relaxation result is then applied in order to obtain a tractable finite set of finite-dimensional LMIs. The interest of the approach resides in (1) the synthesis of a new type of controller scheduled by the delay value which has a lower memory consumption than controllers with memory (since it is not necessary to store past values of the state), and (2) an easy consideration of uncertainties on the delay knowledge.  相似文献   

3.
研究了具有随参数变化状态时滞的线性参数变化系统的H控制问题,该系统的状态空间矩阵和时滞是实时可测且在闭集内变化的参数的确定函数.提出了一种新的依赖于参数的H性能准则,该准则通过引入附加矩阵解除了系统矩阵与依赖于参数的Lyapunov函数之间的耦合而更易于数值实现.在此基础上设计了系统的H状态反馈控制器,该控制器能够保证相对于所有能量有界的输入信号闭环系统满足给定的性能指标.采用线性矩阵不等式技术,将控制器存在的充分条件转化为凸优化问题.最后用数值仿真验证了所提出算法的可行性.  相似文献   

4.
This article is concerned with Hankel-norm model approximation (HNMA) for linear parameter-varying systems with parameter-varying time delays. For a given stable system, our attention is focussed on the construction of reduced-order models, which approximate the original system well in a Hankel-norm sense. By applying the slack matrix approach, a delay-dependent sufficient condition is proposed for the robustly asymptotic stability with a Hankel-norm error performance for the error system. Then, the HNMA problem is solved by using the projection approach, which casts the model approximation into a sequential minimisation problem subject to linear matrix inequality constraints by employing the cone complementary linearisation algorithm. Finally, a numerical example is provided to illustrate the effectiveness of the proposed methods.  相似文献   

5.
研究在切换系统的切换信号不可测的情况下,如何为子系统控制器另外设计切换信号的问题.基于闭环系统的严格无源性,通过实时为系统选择合适的控制器来确保闭环系统的稳定性.提出了一种子系统控制器切换律的设计方法.非线性算例验证了结论的正确性.  相似文献   

6.
线性切换容错控制系统稳定性的新判据*   总被引:1,自引:0,他引:1  
研究了线性切换容错控制系统的稳定性问题。利用分段李雅普诺夫函数方法,结合梅茨勒矩阵的性质和矩阵不等式的分析技巧,得到了基于李雅普诺夫—梅兹勒线性矩阵不等式判定系统稳定的新结果。设计依赖于状态的切换规则便于计算、易于检验。最后利用MATLAB工具箱得到的仿真实例验证了本结果的可行性。  相似文献   

7.
本文探讨离散时间切换线性系统的最小状态超调设计问题. 对有限时长情形, 给出基于穷尽搜索的构造性 算法, 并采用降价法提高计算效率. 对无限时长情形, 给出基于分段总汇的次优设计方案  相似文献   

8.
将时滞线性参数变化(LPV)思想应用于重复过程,研究其H∞控制问题.基于参数依赖Lyapunov函数方法,给出了该重复过程的稳定性和控制器设计的充分条件;同时通过投影定理引入两个附加矩阵,解除了重复过程矩阵和依赖于参数的Lyapunov函数矩阵之间的耦合,使得到的条件便于求解.仿真实例表明了该设计方法的有效性.  相似文献   

9.
This paper is concerned with the problem of the fault detection filter design for discrete‐time switched linear systems with average dwell‐time. The designed fault detection filters are also switched systems, which are assumed to be asynchronously switched with the original switched systems. Improved results on the weighted l2 performance and the H ? performance are first given, and the multiple Lyaounov‐like functions during matched period and unmatched period for the running time of one subsystem are used. By the aid of multiple Lyapunov‐like functions combined with Projection Lemma, the FD filters are designed such that the augmented systems under asynchronous switching are exponentially stable, and the residual signal generated by the filters achieves the weighted l2‐gain for disturbances and guarantees the H ? performance for faults. Sufficient conditions are formulated by linear matrix inequalities, and the filter gains are characterized in terms of the solution of a convex optimization problem. Finally, examples are provided to demonstrate the effectiveness of the proposed design method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, the L1 filtering problem is studied for continuous‐time switched positive linear systems (SPLSs) with a small delay existing in the switching of the filter and the subsystem. Unlike the existing literature concerned with asynchronous problems of SPLSs, the synchronous and asynchronous filters will be designed separately, which implies less conservative results. By introducing a class of clock‐dependent Lyapunov function (CDLF), which jumps down when the modes of the filter or the subsystem change and may increase or decrease during the asynchronous interval, clock‐dependent sufficient conditions characterizing a nonweighted L1‐gain performance of the filter error systems are established. Then, based on the L1 analysis results, a pair of error‐bounding filters are designed to estimate the outputs of SPLSs. The filter gains can be obtained by solving a set of linear programming. Finally, two numerical examples are presented to show the effectiveness and advantages of the results.  相似文献   

11.
The paper proposes a hierarchical control design of an electro-hydraulic actuator, which is used to improve the roll stability of vehicles. The purpose of the control system is to generate a reference torque, which is required by the vehicle dynamic control. The control-oriented model of the actuator is formulated in two subsystems. The high-level hydromotor is described in a linear form, while the low-level spool valve is a polynomial system. These subsystems require different control strategies. At the high level, a linear parameter-varying control is used to guarantee performance specifications. At the low level, a control Lyapunov-function-based algorithm, which creates discrete control input values of the valve, is proposed. The interaction between the two subsystems is guaranteed by the spool displacement, which is control input at the high level and must be tracked at the low-level control. The spool displacement has physical constraints, which must also be incorporated into the control design. The robust design of the high-level control incorporates the imprecision of the low-level control as an uncertainty of the system.  相似文献   

12.
This paper is concerned with the problem of control with ‐stability constraint for a class of switched positive linear systems. The ‐stability means that all the poles of each subsystem of the resultant closed‐loop system belong to a prescribed disk in the complex plane. A sufficient condition is derived for the existence of a set of state‐feedback controllers, which guarantees that the closed‐loop system is not only positive and exponentially stable with each subsystem ‐stable but also has a weighted performance for a class of switching signals with average dwell time greater than a certain positive constant. Both continuous‐time and discrete‐time cases are considered, and all of the obtained conditions are formulated in terms of linear matrix inequalities, whose solution also yields the desired controller gains and the corresponding minimal average dwell time. Numerical examples are given to illustrate the effectiveness of the presented approach.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the problem of exponential H filter problem for a class of discrete‐time polytopic uncertain switched linear systems with average dwell time switching is investigated. The exponential stability result of the general discrete‐time switched systems using a discontinuous piecewise Lyapunov function approach is first explored. Then, a new µ‐dependent approach is proposed, which means the analysis or synthesis of the underlying systems is dependent on the increase degree µ of the piecewise Lyapunov function at the switching instants. A mode‐dependent full‐order filter is designed such that the developed filter error system is robustly exponentially stable and achieves an exponential H performance. Sufficient existence conditions for the desired filter are derived and formulated in terms of a set of linear matrix inequalities, and consequently the minimal average dwell time and the corresponding filter are obtained from such conditions for a given system decay degree. A numerical example is presented to demonstrate the potential and effectiveness of the developed theoretical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
研究了一类离散线性切换系统的一致有限时间稳定性分析和反馈镇定.基于线性矩阵不等式技术,给出了在任意切换信号作用下,离散线性切换系统有限时间稳定和有限时间有界的充分条件,并给出了离散线性切换控制系统一致有限时间状态反馈控制器的设计方法.将上述分析结果应用于一类丢包有界的网络控制系统,得到了保证其有限时间稳定的反馈控制器.最后,通过两个数值仿真例子验证了所提方法的有效性.  相似文献   

15.
16.
针对一类具有时变时延以及Lipschitz非线性项的网络化线性参数变化系统,研究了系统中存在外部扰动、执行器和传感器同时发生随机故障时的容错控制问题。用Bernoulli分布序列描述执行器和传感器发生的随机故障,利用自由权矩阵方法处理时变时延。根据Lyapunov-Krasovskii稳定性定理和线性矩阵不等式(LMI)方法求出◢H◣▼∞▽容错控制器存在的充分条件,然后通过利用近似基函数和网格化技术将无限维的LMI求解问题转换为有限维的LMI问题,得到了相应的容错控制器增益。最后,通过数值仿真验证了所设计方法的有效性。  相似文献   

17.
一类离散时间切换系统鲁棒控制器设计   总被引:7,自引:0,他引:7  
考虑一类非线性离散时间切换系统的鲁棒二次镇定和渐近镇定问题.利用公共李亚普诺夫函数方法和多李亚普诺夫函数方法,分别设计了切换系统鲁棒状态反馈控制器和输出反馈控制器,保证了切换系统的二次稳定性和渐近稳定性.仿真结果验证了所提出算法的有效性.  相似文献   

18.
A switched nonlinear system subject to disturbances is considered in this paper. The switching signal admits an average dwell time and a state feedback control depending on the system operating modes, detected with a maximum time delay, is applied to the system. In this framework, the input‐to‐state stability problem of the closed‐loop system is addressed. Based on some established existence conditions of mode‐dependent Lyapunov‐like functions, the values of the maximum time delay and the average dwell time that allow to achieve the input‐to‐state stability of the closed‐loop system are determined. In order to obtain more tractable results, the existence conditions of the mode‐dependent Lyapunov‐like functions are given in terms of sum‐of‐squares programming in the case of polynomial nonlinearities. In the linear case, they are expressed in terms of linear matrix inequalities and a procedure for the synthesis of the mode‐dependent controller is provided in this situation. The established theoretical results are illustrated through a control problem of a building ventilation system and a switched control problem of a vehicle suspension system.  相似文献   

19.
In this paper we consider the problem of designing state observers with guaranteed power‐to‐power (RMS) gain for a class of stochastic discrete‐time linear systems that possess both measurable parameter variations and Markovian jumps in their dynamics. It is shown in the paper that an upper bound on the RMS gain of the observer can be characterized in terms of feasibility of a family of parameter‐dependent linear matrix inequalities (LMIs). Any feasible solution to these LMIs can then be used to explicitly construct a parameter‐varying jump observer that guarantees the desired performance level. This design framework is then specialized to a problem of state estimation for a linear parameter‐varying plant whose state measurements are available through a lossy Bernoulli channel. Two numerical examples illustrate the results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This paper addresses the design problem of gain-scheduled inverse systems (GSISs) for linear parameter-varying (LPV) systems, whose state-space matrices are represented as parametrically affine matrices, using parameter-dependent Lyapunov functions (PDLFs), and proposes a method for them via parametrically affine linear matrix inequalities (LMIs). Our method includes robust inverse system (RIS) design as a special case. For RIS design, our method theoretically encompasses the method using constant Lyapunov functions. A design example is included to illustrate our conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号