首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
设R是环,(S,≤)是严格全序幺半群,且对任意s∈S都有0≤s.本文证明了环R是拟Baer环当且仅当R上的广义幂级数环[[RS,≤]]是拟 Baer环.  相似文献   

2.
Malcev-Neumann环的主拟Baer性质   总被引:2,自引:0,他引:2  
刘仲奎 《数学杂志》2005,25(3):237-244
设R是环,G是偏序群,σ是从G到R的自同构群的映射。本文研究了Malcev-Neumann环R*((G))是主拟Baer环的条件。证明了如下结果:如果R是约化环并且σ是弱刚性的,则R*((G))是主拟Baer环当且仅当R是主拟Baer环,并且I(R)的任意G可标子集在I(R)中具有广义并.  相似文献   

3.
本文主要讨论了环R和迭代的斜多项式环T(u)的零化子之间的关系,从而得出在一定条件下,R是Baer环当且仅当T(u)是Baer环。而对于拟-Baer性,只要R是拟Baer环就行了,作为推论我们证明了sl(2)的包络代数和量子包络代数都是拟Baer环。  相似文献   

4.
罗朗级数环的主拟Baer性   总被引:3,自引:0,他引:3  
刘仲奎 《数学学报》2002,45(6):1107-111
称环 R为右主拟 Baer环(简称为右p·q.Baer环),如果 R的任意主右理想的右零化子可由幂等元生成.本文证明了,若环 R满足条件Sl(R)(?)C(R),则罗朗级数环R[[x,x-1]]是右p.q.Baer环当且仅当R是右p.q.Baer环且R的任意可数多个幂等元在I(R)中有广义join.同时还证明了,R是右p.q.Baer环当且仅当R[x,x-1]是右P.q.Baer环.  相似文献   

5.
斜幂级数环的主拟Baer性   总被引:4,自引:0,他引:4  
设R是环,并且R的左半中心幂等元都是中心幂等元, α是R的一个弱刚性自同态. 本文证明了斜幂级数环R[[x,α]]是右主拟Baer环当且仅当R是右主拟Baer环,并且R的任意可数幂等元集在I(R)中有广义交,其中I(R)是R的幂等元集.  相似文献   

6.
分次Armendariz环与P.P.环   总被引:1,自引:0,他引:1  
周忠眉 《数学研究》2001,34(2):199-203
引进分次Armendariz环的概念,讨论了分次环R= n∈2Rn及由它导出的非分次环R,R0,及R[x]之间关于Armendariz环性质的关系,并推广了[8]的结论,得到在R= n∈ZRn是Z-型正分次环的前提下,若R是分次Armendariz,分次正规环,则R是P.P环(Bear环)当且仅当R是分次P.P.环(分环Baer环)。  相似文献   

7.
在此文中,我们对Strong-Armendariz环和Baer PP及PS环Ore-扩张R[x,x~(-1);α]的一些性质进行了讨论研究,并得到了一些结果.主要证明了R是Baer(PP)环当且仅当R[[x]]是Baer(PP)环及R是α-rigid环时,R是Baer(PP,PS)环当且仅当R[[x]]是Baer(PP,PS)环.  相似文献   

8.
本文引进了分次环的分次Excellent扩张概念,设S=⊕_(g∈G)S_g是R=⊕_(g∈G)R_g的分次Excellent扩张,证明了S是分次右V-环当且仅当R是分次右V-环,S是分次PS-环当且仅当R是分次PS-环,S是分次Von Neumann正则环当且仅当R是分次Von Neumann正则环。  相似文献   

9.
S-内射模及S-内射包络   总被引:1,自引:0,他引:1  
设R是环.设S是一个左R-模簇,E是左R-模.若对任何N∈S,有Ext_R~1(N,E)=0,则E称为S-内射模.本文证明了若S是Baer模簇,则关于S-内射模的Baer准则成立;若S是完备模簇,则每个模有S-内射包络;若对任何单模N,Ext_R~1(N,E)=0,则E称为极大性内射模;若R是交换环,且对任何挠模N,Ext_R~1(N,E)=0,则E称为正则性内射模.作为应用,证明了每个模有极大性内射包络.也证明了交换环R是SM环当且仅当T/R的正则性内射包e(T/R)是∑-正则性内射模,其中T=T(R)表示R的完全分式环,当且仅当每一GV-无挠的正则性内射模是∑-正则性内射模.  相似文献   

10.
环$R$称为拟-中心半交换的(简称QCS环)如果对$a,b\in R$, $ab=0$蕴含$aRb\subseteq Q(R)$, 其中$Q(R)$为$R$的拟中心.证明了如果$R$ 为QCS环, 那么$R$的幂零元集恰好是它的Wedderburn根, 且对$n\geq 2$, 上三角矩阵环$R=T_n(S)$ 是QCS 环当且仅当$n=2$ 且$S$ 是duo 环, 而$T_{2k+2}^k$是QCS环如果$R$是约化的duo环.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号