首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnIn2S4 microspheres (ZIS MSs) were for the first time decorated with carbon quantum dots (CQDs) and platinum nanoparticles (NPs) as dual co‐catalysts of for photocatalytic H2 production. The ZIS MSs co‐loaded with CQDs and Pt exhibited a high photocatalytic H2 production rate of 1032.2 μmol h?1 g?1 with an apparent quantum efficiency of 2.2 % (420 nm) in triethanolamine aqueous solution under visible‐light irradiation, which was much higher than the respective photocatalytic rates of pure ZIS, Pt loaded ZIS, and CQDs‐decorated ZIS. Such a great enhancement was attributed to the integrative effect of good crystallization, enhanced light absorption, high electrical conductivity of CQDs, and the vectorial electron transfer from ZIS to CQDs and Pt NPs (ZIS→CQDs→Pt).  相似文献   

2.
In this study, a novel ternary AgI/ZnIn2S4/BiVO4(AZB) composite photocatalyst was successfully prepared by hydrothermal method and in-situ precipitation method. The as-synthesized samples were characterized by XRD, SEM, TEM, XPS and so on, and the photocatalytic activity was evaluated through photocatalytic degradation of tetracycline (TC) under visible light irradiation. When the molar ratio of Bi to Ag was 1:1, the degradation rate of TC can reach 91.44 % within 150 min. The AZB heterojunction demonstrated outstanding efficiency with the apparent reaction rate constants of 0.02118 min?1 for TC removal, was 4.68, 3.27 and 3.27 times higher than that of pure BiVO4, AgI and ZnIn2S4. Based on active species trapping experiments and ESR analysis, a dual Z-Scheme pathways among BiVO4, AgI and ZnIn2S4 for effective separation of photogenerated charges was recommended. This work provided a promising insight for the design of ternary dual Z-scheme heterojunction with multilevel electron transfer to present greater photo-absorption, charge separation, and photodegradation for environmental decontamination.  相似文献   

3.
Cubic and rhombohedral ZnIn2S4 were synthesized by thermal sulfidation of Zn-In mixed oxide precursor in H2S atmosphere at different temperatures. Cubic ZnIn2S4 was obtained when Zn-In mixed oxide precursor was sulfurized at 400 °C. With sulfidation temperature increasing from 400 to 800 °C, the crystal phase of ZnIn2S4 gradually turned from cubic to rhombohedral, which was demonstrated by different analysis techniques such as XRD, Raman, SEM, etc. UV-vis absorption spectra indicated that cubic ZnIn2S4 displayed better light absorption property than rhombohedral ZnIn2S4, with band gaps calculated to be 2.0 and 2.5 eV, respectively. However, under visible light irradiation, rhombohedral ZnIn2S4 photocatalyzed H2 evolution from aqueous sodium sulfite/sulfide solution efficiently, whereas cubic ZnIn2S4 was not active for this reaction. The photoluminescence property revealed the different dynamics of photogenerated carriers, which made a predominant contribution to the increasing photocatalytic performances of ZnIn2S4 with crystal phase turning from cubic to rhombohedral.  相似文献   

4.
采用溶剂热法制备出Co掺杂的ZnIn2S4催化剂.用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外-可见(UV-Vis)漫反射光谱等技术对其进行了表征. XRD 和XPS结果表明, Co成功地掺杂到ZnIn2S4晶格内. 随着Co掺杂量增加, 样品的吸收边发生红移, 同时ZnIn2S4的微球形态会遭到破坏. 光催化反应实验结果表明Co2+掺杂提高了ZnIn2S4光催化性能, 掺杂量为0.3%(w)时表现出最佳催化性能. 并对可能的催化机理进行了讨论.  相似文献   

5.
采用湿化学合成路线以巯基乙酸为包覆剂,水为溶剂制备了六方相ZnIn2S4。应用能谱分析(EDS)、X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)和紫外-可见光谱对产物的组成、结构、形貌和光学性质进行了表征。结果表明,所得到的ZnIn2S4具有层状形貌。这些层状物是由ZnIn2S4纳米粒子前驱体在热处理过程中聚集生长而成的。另外,以ZnIn2S4纳米粒子前驱体为起始原料,借助表面活性剂的导向作用在固/液界面成功地实现了ZnIn2S4的形貌控制生长,得到了具有棒状、棒簇状、管簇状形貌的ZnIn2S4。根据实验结果,初步讨论了可能的表面活性剂辅助的ZnIn2S4形貌控制生长的机制。  相似文献   

6.
NiS/TiO2 nano-sheet films (NiS/TiO2 NSFs) photocatalysts were prepared by loading NiS nanoparticles as noble metal-free cocatalysts on the surface of TiO2 films through a solvothermal method. The prepared samples were characterized by XRD, SEM, EDS, UV–Vis absorption spectra and XPS analysis. The photocatalytic H2 evolution and photoluminescence spectroscopy (PL) experiments indicated that the NiS cocatalysts could efficiently promote the separation of photogenerated charge carriers in TiO2 and consequently enhance the H2 evolution activity. The hydrogen yield obtained from the optimal sample reached 4.31 μmol cm–2 at 3.0 h and the corresponding energy efficiency was about 0.26%, which was 21 times higher than that of pure TiO2 NSF. A possible photocatalytic mechanism of NiS cocatalyst on the improvement of the photocatalytic performance of TiO2 NSF was also proposed.  相似文献   

7.
A highly active hierarchical MoS2/ZnIn2S4 composite catalyst was synthesized in situ by using a facile controlled‐growth approach through a solvothermal process. During the solvothermal reaction, 2D ultrathin curled ZnIn2S4 nanosheets grew on the surface of MoS2 slices, which could help to form a more‐homogeneous mixture, effective interfacial contact, and strong interactions between the ZnIn2S4 nanosheets and the MoS2 slices. The intimate contact between ZnIn2S4 and MoS2 favored the formation of junctions between the two components, thereby improving the charge separation and prolonging the mean lifetime of the electron–hole pairs. Moreover, growing ZnIn2S4 nanosheets by visible‐light catalysis on MoS2 slices afforded a higher number of available catalytically active sites. So, the photocatalytic hydrogen‐evolution performance of the hierarchical MoS2/ZnIn2S4 composite was significantly enhanced, owing to a synergistic effect of these factors. This work could provide new insights into the fabrication of a highly efficient and low‐cost non‐noble‐metal co‐catalyst for visible‐light H2 generation.  相似文献   

8.
Visible‐light‐responsive hierarchical Co9S8/ZnIn2S4 tubular heterostructures are fabricated by growing 2D ZnIn2S4 nanosheets on 1D hollow Co9S8 nanotubes. This design combines two photoresponsive sulfide semiconductors in a stable heterojunction with a hierarchical hollow tubular structure, improving visible‐light absorption, yielding a large surface area, exposing sufficient catalytically active sites, and promoting the separation and migration of photogenerated charges. The hierarchical nanotubes exhibit excellent photocatalytic H2 evolution and CrVI reduction efficiency. Under visible‐light illumination, the optimized Co9S8/ZnIn2S4 heterostructure provides a remarkable H2 generation rate of 9039 μmol h?1 g?1 without the use of any co‐catalysts and CrVI is completely reduced in 45 min. The Co9S8/ZnIn2S4 heterostructure is stable after multiple photocatalytic cycles.  相似文献   

9.
Photocatalytic water splitting for hydrogen production using sustainable sunlight is a promising alternative to industrial hydrogen production. However, the scarcity of highly active, recyclable, inexpensive photocatalysts impedes the development of photocatalytic hydrogen evolution reaction (HER) schemes. Herein, a metal–organic framework (MOF)‐template strategy was developed to prepare non‐noble metal co‐catalyst/solid solution heterojunction NiS/ZnxCd1?xS with superior photocatalytic HER activity. By adjusting the doping metal concentration in MOFs, the chemical compositions and band gaps of the heterojunctions can be fine‐tuned, and the light absorption capacity and photocatalytic activity were further optimized. NiS/Zn0.5Cd0.5S exhibits an optimal HER rate of 16.78 mmol g?1 h?1 and high stability and recyclability under visible‐light irradiation (λ>420 nm). Detailed characterizations and in‐depth DFT calculations reveal the relationship between the heterojunction and photocatalytic activity and confirm the importance of NiS in accelerating the water dissociation kinetics, which is a crucial factor for photocatalytic HER.  相似文献   

10.
Photocatalytic water splitting for hydrogen production using sustainable sunlight is a promising alternative to industrial hydrogen production. However, the scarcity of highly active, recyclable, inexpensive photocatalysts impedes the development of photocatalytic hydrogen evolution reaction (HER) schemes. Herein, a metal–organic framework (MOF)‐template strategy was developed to prepare non‐noble metal co‐catalyst/solid solution heterojunction NiS/ZnxCd1−xS with superior photocatalytic HER activity. By adjusting the doping metal concentration in MOFs, the chemical compositions and band gaps of the heterojunctions can be fine‐tuned, and the light absorption capacity and photocatalytic activity were further optimized. NiS/Zn0.5Cd0.5S exhibits an optimal HER rate of 16.78 mmol g−1 h−1 and high stability and recyclability under visible‐light irradiation (λ>420 nm). Detailed characterizations and in‐depth DFT calculations reveal the relationship between the heterojunction and photocatalytic activity and confirm the importance of NiS in accelerating the water dissociation kinetics, which is a crucial factor for photocatalytic HER.  相似文献   

11.
Photocatalysts derived from semiconductor heterojunctions that harvest solar energy and catalyze reactions still suffer from low solar‐to‐hydrogen conversion efficiency. Now, MXene (Ti3C2TX) nanosheets (MNs) are used to support the in situ growth of ultrathin ZnIn2S4 nanosheets (UZNs), producing sandwich‐like hierarchical heterostructures (UZNs‐MNs‐UZNs) for efficient photocatalytic H2 evolution. Opportune lateral epitaxy of UZNs on the surface of MNs improves specific surface area, pore diameter, and hydrophilicity of the resulting materials, all of which could be beneficial to the photocatalytic activity. Owing to the Schottky junction and ultrathin 2D structures of UZNs and MNs, the heterostructures could effectively suppress photoexcited electron–hole recombination and boost photoexcited charge transfer and separation. The heterostructure photocatalyst exhibits improved photocatalytic H2 evolution performance (6.6 times higher than pristine ZnIn2S4) and excellent stability.  相似文献   

12.
Development of efficient heterostructured photocatalysts that respond to visible light remains a considerable challenge. We herein show the synthesis of ZnIn2S4/carbon quantum dot hybrid photocatalysts with flowerlike microspheres via a facile solvothermal method. The ZnIn2S4/carbon quantum dot flowerlike microspheres display enhanced photocatalytic and photoelectrochemical activity compared with that of pure ZnIn2S4. With a content of only 0.5 wt % carbon quantum dots, 93% of Cr(VI) is reduced under visible-light irradiation at 40 min. As a co-catalyst, the carbon quantum dots improve the light absorption and lengthen the lifetime of charge carriers, consequently enhancing the photocatalytic and photoelectrochemical activity.  相似文献   

13.
Photocatalytic syngas (CO and H2) production with CO2 as gas source not only ameliorates greenhouse effect, but also produces valuable chemical feedstocks. However, traditional photocatalytic systems require noble metal or suffers from low yield. Here, we demonstrate that S vacancies ZnIn2S4 (VS-ZnIn2S4) nanosheets are an ideal photocatalyst to drive CO2 reduction into syngas. It is found that building S vacancies can endow ZnIn2S4 with stronger photoabsorption, efficient electron–hole separation, and larger CO2 adsorption, finally promoting both hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR). The syngas yield of CO and H2 is therefore significantly increased. In contrast to pristine ZnIn2S4, the syngas yield over VS-ZnIn2S4 can be improved by roughly ≈4.73 times and the CO/H2 ratio is modified from 1:4.18 to 1:1. Total amount of syngas after 12 h photocatalysis is as high as 63.20 mmol g−1 without use of any noble metals, which is even higher than those of traditional noble metal-based catalysts in the reported literatures. This work demonstrates the critical role of S vacancies in mediating catalytic activity and selectivity, and highlights the attractive ability of defective ZnIn2S4 for light-driven syngas production.  相似文献   

14.
《中国化学快报》2023,34(7):107775
Zinc indium sulfide (ZnIn2S4), a novel photocatalyst, has attracted considerable attention and been extensively studied over the past few years owing to its various advantages such as nontoxicity, structural stability, easy availability, suitable band gap and fascinating photocatalytic activity. This review mainly focuses on the recent state-of-art progress of ZnIn2S4-based photocatalysts. First, we briefly introduced preparation methods of ZnIn2S4 with diverse morphological structures. Then, considering the photocatalytic activity of pristine ZnIn2S4 would be confined by rapid recombination of photo-generated electron-hole pairs and limited light absorption range, different modulation strategies such as layer and size control, doping, vacancy engineering and hetero-nanostructures were expounded in detail. Afterwards, the applications of ZnIn2S4 in various fields such as H2 production, CO2 reduction, value-added products synthesis, pollutant purification and N2 fixation are clearly summarized. In the end, we sorted out the conclusions and outlook, aiming to provide some new insights for this fascinating material.  相似文献   

15.
The Quaternary System ZnIn2S4? ZnIn2Se4? In2Se3? In2S3 The title system has been investigated on the indium rich side (ratio In/Zn ≥ 2) on samples quenched from 800°C to room temperature using x-ray methods. In this section 7 different phases could be identified the phase borders of which are given. ZnIn2S4-type and thiogallate type mixed crystals only show a small region of homogeneity while the monophase region of spinel type mixed crystals in the indiumsulfide rich part of the phase diagram has a larger extension. There is a new trigonal compound ZnIn2S2Se2 (ahex = 3.937, chex = 31.97 Å) with a large region of homogeneity. In the indiumselenide rich part there are two new phases: (i) Zn0.4In2Se3.4 with unknown structure and (ii) a ternary phase of unknown structure in the system In2S3?xSex for 2.1 ≤ x ≤ 2.7.  相似文献   

16.
Limited by the relatively sluggish charge‐carrier separation in semiconductors, the photocatalytic performance is still far below what is expected. Herein, a model of ZnIn2S4 (ZIS) nanosheets with oxygen doping is put forward to obtain in‐depth understanding of the role that doping atoms play in photocatalysis. It shows enhanced photocatalytic activity compared with pristine ZIS. The electron dynamics analyzed by ultrafast transient absorption spectroscopy reveals that the average recovery lifetime of photoexcited electrons is increased by 1.53 times upon oxygen incorporation into the ZIS crystals, indicating enhanced separation of photoexcited carriers in oxygen‐doped ZIS nanosheets. As expected, the oxygen‐doped ZIS nanosheets show a remarkably improved photocatalytic activity with a hydrogen evolution rate of up to 2120 μmol h?1 g?1 under visible‐light irradiation, which is 4.5 times higher than that of the pristine ZIS nanosheets.  相似文献   

17.
《中国化学快报》2021,32(8):2534-2538
Semiconductor-mediated photocatalysis is a promising photochemical process for harvesting inexhaustible solar energy to address the energy crisis and environmental issues. However, the low solar-light response and poor carrier migration are severe drawbacks that limit its practical application. Herein, we propose a convenient pathway for improving electron-hole separation and solar energy utilisation by engineering defective ZnIn2S4 with doping of carbon dots. The optimum ZnIn2S4/CD200 nanosheet exhibited 100% diclofenac (DCF) degradation within 12 min under visible-light. The estimated photocatalytic efficiency under natural sunlight was 98.2%. Scavenging experiments and electron spin resonance (ESR) analysis indicated that the superoxide radical (O2), photoelectron (e), hole (h+) and hydroxyl radical (OH) were the predominant contributions in the ZnIn2S4/CD200/DCF/visible light system. Furthermore, ZnIn2S4/CD200 exhibited excellent reusability and stability after 4 times recycling. The photodegradation routes mainly involved hydroxylation, decarboxylation, CN bond cleavage, dechlorination, ring closure, and ring-opening. The ecological risk assessment and total organic carbon (TOC) tests exhibited desirable toxicity reduction and mineralization results. These observations not only offer a facile strategy for the construction of defective ZnIn2S4, but also pioneer the direct utilisation of natural light for highly efficient environmental remediation.  相似文献   

18.
《中国化学快报》2023,34(4):107726
30% FeCN/ZIS (30% Fe doped g-C3N4 composited ZnIn2S4) was synthesized by a simple water bath method, via in-situ growth of abundant well-dispersed ZnIn2S4 nanosheets on the Fe doped g-C3N4 surface. Experimental results showed the optimized 30% FeCN/ZIS achieved the best photoreduction of Cr(VI) performance within a wide pH range, which was 9.5 times and 700 times higher than that of pure ZnIn2S4 and 30% FeCN (Fe doped g-C3N4). This is due to the intense synergy between the Fe-Nx bond and close interface contact produces a high-speed charge transfer channel, thus significantly improving the efficiency of optical carrier separation and migration. Meanwhile, UV-vis diffuse reflection spectra and photoluminescence spectroscopy showed that iron doping significantly narrowed the bandgap of g-C3N4, preventing electron-hole pair recombination. Further, the microstructures and charge separation properties were analyzed by scanning electron microscope, Photoluminescence Spectroscopy and time-resolved photoluminescence, which revealed the structure-activity relationship of composite structure and the synergistic mechanism of each functional component. This research should provide a viable technique for creating composites with high photocatalytic activity for the treatment of chromium-containing wastewater.  相似文献   

19.
Gold (Au) plasmonic nanoparticles were grown evenly on monolayer graphitic carbon nitride (g-C3N4) nanosheets via a facile oil-bath method. The photocatalytic activity of the Au/monolayer g-C3N4 composites under visible light was evaluated by photocatalytic hydrogen evolution and environmental treatment. All of the Au/monolayer g-C3N4 composites showed better photocatalytic performance than that of monolayer g-C3N4 and the 1% Au/monolayer g-C3N4 composite displayed the highest photocatalytic hydrogen evolution rate of the samples. The remarkable photocatalytic activity was attributed largely to the successful introduction of Au plasmonic nanoparticles, which led to the surface plasmon resonance (SPR) effect. The SPR effect enhanced the efficiency of light harvesting and induced an efficient hot electron transfer process. The hot electrons were injected from the Au plasmonic nanoparticles into the conduction band of monolayer g-C3N4. Thus, the Au/monolayer g-C3N4 composites possessed higher migration and separation efficiencies and lower recombination probability of photogenerated electron-hole pairs than those of monolayer g-C3N4. A photocatalytic mechanism for the composites was also proposed.  相似文献   

20.
We have synthesized several pseudoternary layered compounds by cation or anion cross substitution in ternary AB2X4 compounds. Here we report on the low frequency Raman spectra obtained from ZnxCd1-xIn2S4, Zn(InxGa1-x)2S4 and ZnIn2(SxSe1-x)4 single crystals. Within these systems we have identified five compositionally or dynamically different phases. Each of these phases may be characterized by its peculiar low frequency Raman spectrum which is connected to the dynamics of the layers in the unit cell. Abrupt structural/dynamical changes are observed as a function of composition between different phases. Within each phase compositional changes cause only smooth and small spectral variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号