首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
The transport properties of ionic liquids (ILs) are crucial properties in view of their applications in electrochem-ical devices. One of the most important advantages of ILs is that their chemical–physical properties and conse-quently their bulk performances can be well tuned by optimizing the chemical structures of their ions. This will require elucidating the structural features of the ions that fundamentally determine the characteristics of the nanostructures and the viscosities of ILs. Here we showed for the first time that the“rigidity”, the order, and the compactness of the three-dimensional ionic networks generated by the anions and the cation head groups determine the formation and the sizes of the nanostructures in the apolar domains of ILs. We also found that the properties of ionic networks are governed by the conformational flexibility and the symmetry of the anion and/or the cation head group. The thermal stability of the nanostructures of ILs was shown to be con-trolled by the sensitivity of the conformational equilibrium of the anion to the change of temperature. We showed that the viscosity of ILs is strongly related to the symmetry and the flexibility of the constitute ions rather than to the size of the nanostructures of ILs. Therefore, the characteristics of the nanostructures and the viscosities of ILs, especially the thermal stability of the nanostructures, can be fine-tuned by tailoring the symmetry and the conformational flexibility of the anion.  相似文献   

2.
This paper presents the vapor–liquid equilibrium (VLE) data of acetonitrile–water system containing ionic liquids (ILs) at atmospheric pressure (101.3 kPa). Since ionic liquids dissociate into anions and cations, the VLE data for the acetonitrile+water+ILs systems are correlated by salt effect models, Furter model and improved Furter model. The overall average relative deviation of Furter model and improved Furter model is 5.43%and 4.68%, respectively. Thus the salt effect models are applicable for the correlation of IL containing systems. The salting-out effect theory can be used to explain the change of relative volatility of acetonitrile–water system.  相似文献   

3.
Three ionic liquids(ILs),1-ethyl-3-methylimidazolium bromine([EMIM]Br),1-butyl-3-methylimidazolium bromine([BMIM]Br),and 1-hexyl-3-methylimidazolium bromine([HMIM]Br),were used as the solvent for separation of {tert-butyl alcohol(TBA)+ water} azeotrope.Vapor–liquid equilibrium(VLE)data for {TBA + water + IL}ternary systems were measured at 101.3 k Pa.The results indicate that all the three ILs produce an obvious effect on the VLE behavior of {TBA + water} system and eliminate the azeotropy in the whole concentration range.[EMIM]Br is the best solvent for the separation of {TBA + water} system by extractive distillation among the three ILs.The experimental VLE data for the ternary systems are correlated with the NRTL model equation with good correlations.Explanations are given with activity coefficients of water and TBA,and the experimental VLE-temperature data for {TBA or water + IL} binary systems.  相似文献   

4.
A simple and efficient method is proposed for the synthesis of tetrahydrobenzo[b]pyrans with aromatic alde-hydes, active methylene compounds, and dimedone using basic ionic liquid catalyst in water. The procedure offers several advantages including short reaction time, good yield, easy procedure, and good recyclability of catalysts, which may be a practical alternative to conventional processes for preparation of 4-hpyrans.  相似文献   

5.
The separation of methanol(MeOH) and dimethyl carbonate(DMC) is important but difficult due to the formation of an azeotropic mixture. In this work, isobaric vapor–liquid equilibrium(VLE) data for the ternary systems containing different imidazolium–based ionic liquids(ILs), i.e. MeOH + DMC + 1-butyl-3-methy-limidazolium bis[(trifluoromethyl)sulfonyl]imide([Bmim][Tf_2N]), MeOH + DMC + 1-ethyl-3-methyl-imidazolium bis[(trifluoromethyl)sulfonyl]imide([Emim][Tf_2N]), and MeOH + DMC + 1-ethyl-3-methylimidazolium hexafluorophosphate([Emim][PF6])) were measured at 101.3 kPa. The mole fraction of IL was varied from0.05 to 0.20. The experimental data were correlated with the NRTL and Wilson equations, respectively. The results show that imidazolium-based ILs were beneficial to improve the relative volatility of MeOH to DMC,and [Bmim][Tf_2 N] showed a much more excellent performance on the activity coefficient of MeOH. The interaction energies of system components were calculated using Gaussian program, and the effects of cation and anion on the separation coefficient of the azeotropic system were discussed.  相似文献   

6.
Density functional theory calculations have been carried out to establish the influence of mono- and polyvalent cations on the Brønsted acidity of H-ZSM-5. The zeolite was modeled as a cluster containing 41-45 atoms, in the center of which is an Al(1)(OH)SiOAl(2)(OM)unit, where M+ = H+, Li+, Na+, K+, Ca(OH)+, AlO+, Al(OH)+ 2. The local geometry of the Brønsted acid site is affected by the nature of M+ and this in turn causes a change in the value of the proton affinity (PA) for the site. The highest value of PA is 330 kcal/mol for M+ = H+ and the lowest value of PA is 305 kcal/mol for M+ = AlO+. No correlation was found between the value of PA and the Mulliken charge on Al(1). With the exception of the case where M+ = AlO+ the binding energy of CO with the Brøsted acid proton is approximately 8.8 kcal/mol, independent of the nature of M+. When M+ = AlO+, the binding energy for CO is 11.1 kcal/mol. The present calculations suggest that different factors affect proton affinity and the binding energy for CO adsorption.  相似文献   

7.
8.
A series of new bis (imidazolium) cation-based ionic liquids, wherein two imidazole rings are tethered by alkyl ether chains (oxygen numbers) of different lengths, were prepared, and their coal dissolution and dispersion properties were studied. It was found these ionic liquids can be used to fragment, disperse, and partially dissolve micrometer-size coal particles by simply mixing ionic liquid/coal dispersions. Dissolution performances and light hydrocarbon production were found to be sensitively increased by increasing the lengths of alkyl ether chains between imidazolium rings.  相似文献   

9.
The solvation mechanisms of aspirin and etomidate in four combinations of [Emim]+ and [BuGun]+ paired with [OAc] and [NTf2] were systematically studied by molecular dynamics simulations and DFT calculations. It was shown that the favorable solvation of aspirin and etomidate correlated well with hydrogen-bond (H-bond) basicity of anions and the H-bond acidity of cations, respectively. Wherein, the H-bond between aspirin and [OAc] anion with high H-bond basicity possessed covalent feature, so ILs containing [OAc] anion has the best effective in solubilizing aspirin. However, H-bond interactions between etomidate and cations exhibited an electrostatic dominant, and moderate cation–anion interaction could weaken it. Accordingly, for etomidate, the best ILs solvent comprised a weakly interacting anion and a cation with strong H-bond acidity, that is, [BuGun][NTf2]. This solvation difference was because aspirin with carboxyl group displayed strongly H-bond donating characteristic, whereas etomidate with no active hydrogen protons mainly formed H-bond with cations. Additionally, we found that ππ stacking interactions were of secondary importance for the solubilization of etomidate, but little for aspirin. These simulations will be helpful for experimental design new ILs to solubilize some drugs with aspirin-like or etomidate-like structures.  相似文献   

10.
Multiwall carbon nanotube (MWCNT)/cellulose composite fibers were processed from solutions in ethyl methylimidazolium acetate (EMIAc). Rheological percolation in MWCNT/Cellulose/EMIAc solution was observed above 0.01 mass fraction of MWCNT, while electrical percolation in oriented fibers was observed above 0.05 mass fraction of MWCNTs with respect to the weight of the cellulose. Cellulose orientation and crystal size were significantly higher in the composite than in the control cellulose fiber. In addition, in the composite fiber, carbon nanotube orientation was higher than cellulose orientation. At 0.05 mass fraction MWCNT, fiber tensile strength increased by about 25%, strain to failure increased by 100%, and modulus essentially remained unchanged. The composite fibers showed lower thermal shrinkage than the control cellulose fiber. The axial electrical conductivity at 0.1 mass fraction MWCNTs in these oriented fibers was more than 3000 S/m.  相似文献   

11.
离子液体中羟丙基纤维素的合成   总被引:1,自引:2,他引:1       下载免费PDF全文
使用离子液体1,3-二乙基咪唑磷酸二乙酯盐([EEIM][DEP])为反应溶剂主组分来溶解微晶纤维素进行羟丙基化衍生,微晶纤维素和醚化剂在离子液体中均可形成均相,通过碱化、醚化、酸化及洗涤等步骤制备得到不同取代度的羟丙基纤维素。考察了碱化反应温度、反应原料摩尔比、醚化反应时间及酸化剂的种类对羟丙基纤维素产品的收率和摩尔取代度的影响,并采用红外、核磁、TGA等手段对产品结构进行了表征。  相似文献   

12.
Antibiotics mycelium, byproduct of pharmaceutical industry, contains high percentage of proteins, polysaccharides and lipids, while, the low solubility in traditional solvents limits its utilization. The dissolution process of penicillin mycelium was investigated using ionic liquids(ILs) as solvent. Quantitative correlation of solubility and ILs structure and dissolution mechanism were determined. About 91.45% of penicillin mycelium was dissolved in 1-butyl-3-methylimidazolium acetate([Bmim]Ac) under the condition of 120.0 ℃ and [Bmim]Ac/mycelium(m/m) ratio of 3.90:1. Synergistic effect of ILs and DMSO was confirmed with the DMSO/[Bmim]Ac(v/m) ratio in the range of 0.0-1.0. At 25.0 ℃, the dissolution of penicillin mycelium increased from 69.74% to94.50%, with the ratio of DMSO to [Bmim]Ac(v/m) as 1:1. The room temperature dissolution of mycelium provides a novel and energy-saving process for its high-valued utilization. The NMR and FT-IR spectra showed that hydrogen bonds are the dominant driving force for the dissolution in ILs. Quantitative study on the effects of anions and cations of ILs on dissolution using Kamlet-Taft model showed that there was a linearly positive correlation between solubility of penicillin mycelium and(3 parameter of the ILs. The solubility of mycelium increased with increasing hydrogen bond accepting ability of anions and donating ability of cations.  相似文献   

13.
室温离子液体作为一类新型绿色介质,近年来在各个领域的应用得到了突飞猛进的发展。作者综述了离子液体用于燃料油和模型油脱硫技术方面的几种方法,包括萃取法、催化氧化法、氧化-萃取法、光化学氧化-萃取耦合法及烷基化法。离子液体由于可以循环使用,必将在燃料油脱硫技术领域发挥重要作用。  相似文献   

14.
综述了离子液体在燃料油脱硫中的应用情况,详细介绍了Lewis酸性离子液体和非Lewis酸性离子液体对各种烃类与含硫化合物的溶解性以及在汽、柴油萃取脱硫和氧化萃取组合脱硫工艺中的应用,并介绍了Lewis酸性离子液体作为催化剂在FCC汽油烷基化脱硫技术中的应用研究。最后,探讨了离子液体在今后燃料油脱硫中的研究方向和工业化前景。  相似文献   

15.
Electrochemical synthesis of polypyrrole in ionic liquids   总被引:1,自引:0,他引:1  
Electrochemical synthesis of inherently conducting polymers such as polypyrrole is traditionally performed in a molecular solvent/electrolyte system such acetonitrile/lithium perchlorate. We report the use of ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) amide and N,N-butylmethylpyrrolidinium bis(trifluoromethanesulfonyl) amide, both as the growth medium and as an electrolyte for the electrochemical cycling of polypyrrole films. Use of the ionic liquid as the growth medium results in significantly altered film morphologies and improved electrochemical activities.  相似文献   

16.
Ionic liquids (ILs) have received a great deal of attention in the field of engineering during the last decade due to their unique properties. ILs are a very important new class of non-volatile solvents (Tm < 100 °C) in (bio)catalysis applicable to many ionic, polar and non-polar structure groups and as efficient electrolytes [Wasserscheid, P., and Welton, T., 2003, Ionic Liquids in Synthesis (Wiley–VCH, Weinheim, Germany)]. The applications range from electrochemistry, sensors, analysis, and separation techniques to catalysis and reaction engineering. Given their growing importance, it is vital to develop low cost production methods for ionic liquids including efficient techniques for purification and ultra-purification.This paper will present results of purification and ultra-purification of EMIM-chloride and EMIM-bromide (EMIM, 1-ethyl-3-methyl-imidazolium) by melt crystallization. Different techniques for purification are discussed including zone melting, layer crystallization and dry sweating in lab scale [König, A. and Wasserscheid, P., Ultra Purification of Ionic Liquids by Melt Crystallization, Proceedings of the 13th International Workshop on Industrial Crystallization BIWIC 2006, September 13–15, 2006, Delft, The Netherlands, pp. 79–84] and layer crystallization for static and dynamic crystallization conditions in pilot scale. In the case of EMIM-chloride, segregation coefficients are in the range of 0.05 < kseg < 0.6 depending on crystallization rate, yield, feed impurity concentration and techniques used. The crystallization behavior of purified ionic liquids is discussed in detail relative to those of organic substances with similar melting points. Purification potential of EMIM-chloride is discussed with respect to different crystallization techniques and different scales used for crystallization.The excellent purification results of EMIM-chloride suggest melt crystallization techniques offer purification potential for other ionic liquids, creating a new innovative class of solvents and reactants. Melt crystallization can be used as a very efficient method to purify ionic liquids at different scales from 0.5 g up to 1000 kg with purity of wIL>99.99%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号