首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 128 毫秒
1.
陆地生态系统碳源与碳汇及其影响机制研究进展   总被引:25,自引:2,他引:25  
全球碳循环研究中发现,目前已知碳源与碳汇不能达到平衡。存在一个很大的碳失汇。大气、海洋和陆地生态系统是人工源CO2的3个可能的容纳汇,其中陆地生态系统最复杂、最具不确定性,因此陆地生态系统碳源与碳汇研究是全球碳循环研究的核心问题之一。大气成分监测、CO2通量测定、森林资源清查以及模型模拟等方面的研究都表明,CO2施肥效应、氮沉降增加、污染、全球气候变化以及土地利用变化,是影响陆地生态系统碳储量的主要生态机制,但不确定在过去的10~100年以及未来哪一种机制起最主要的作用。  相似文献   

2.
葡萄园生态系统是农业生态系统的重要组成部分, 集中连片栽培的葡萄园具有重要的生态价值。开展葡萄园生态系统碳源/汇的研究, 是完整探讨葡萄园生态系统碳循环必不可少的内容。随着葡萄生态学研究的进一步深入, 如何直观地揭示葡萄园生态系统碳循环规律和碳汇功能已经成为葡萄生态学领域关注的热点问题。研究发现, 葡萄园生态系统固定大量碳, 将碳封存在葡萄果实等一年生器官、主干等多年生器官以及土壤碳库中。葡萄园生态系统碳输入量大于碳输出量, 是碳汇; 土壤是葡萄园生态系统最大的碳库, 占总碳储量的70%, 尤其是土藤界面; 覆盖和免耕作为葡萄园的碳减排策略, 可以减少碳排放, 提高葡萄园土壤肥力。基于此, 为了阐明葡萄园生态系统的碳汇价值, 该文围绕葡萄生态学最新研究进展, 系统回顾了葡萄园生态系统中碳循环规律、碳汇研究进展及碳减排策略, 为葡萄生态学的研究提供理论基础, 并对本领域未来的研究方向和应用前景进行展望。  相似文献   

3.
刘坤  张慧  孔令辉  乔亚军  胡梦甜 《生态学报》2023,43(10):4294-4307
“碳中和”是我国作出的一项重大的国家战略决策,陆地生态系统碳汇作为碳增汇的重要组成部分,在碳中和目标实现的过程中发挥着重要的作用。但当前基于不同观测数据和方法的陆地碳汇计算仍有很大的不确定性,为了全面了解陆地生态系统碳汇分布特征,提高陆地生态系统碳汇评估的准确性,梳理了近年来关于陆地生态系统碳汇评估的国内外研究进展,从“自下而上”和“自上而下”两类途径阐述了陆地生态系统碳汇评估的主要方法(样地清查法、涡度相关法、模型模拟法和碳同化反演法)的主要原理和特征,优势和缺陷,及在不同尺度碳汇研究中的应用,并从土地利用/覆盖变化、气候因素(大气CO2浓度、氮沉降)、环境因素(太阳辐射、温度、降水)等因素阐述了陆地系统碳汇主要驱动因子;分析了我国陆地生态系统碳汇的主要特征及时空变化趋势,并从人类活动(生态工程)和环境因素阐述了中国陆地生态系统碳汇的驱动因素;最后,展望了新的监测手段和评估方法在提升陆地生态系统碳汇评估精度中的作用,从而更好的服务于我国“碳中和”的长远目标。  相似文献   

4.
气候变化对陆地生态系统土壤有机碳储量变化的影响   总被引:6,自引:1,他引:6  
通过研究气候变化对土壤有机碳储藏的影响,对预测未来气候变化下土壤有机碳动态变化与深入理解陆地生态系统变化和气候变化之间的相互作用有着极其重要的意义。本文归纳了土壤类型法、模型模拟法等途径对土壤有机碳储量估算的结果并分析它们各自的不确定性,综述了气候变化对土壤碳贮藏影响机理的研究与相应过程模拟的模型研究进展,并综合分析了当前研究中还存在的问题与不足。  相似文献   

5.
磷影响陆地生态系统碳循环过程及模型表达方法   总被引:1,自引:0,他引:1       下载免费PDF全文
全球气候变暖已大大改变了陆地植物碳吸收能力, 提高了全球植被净初级生产力。随着气候变暖的加剧, 磷对植物生长的限制作用逐渐显现且不断增强, 磷影响陆地生态系统碳循环的机理和模型研究已成为研究热点。该文系统分析了磷影响陆地生态系统碳循环的相关机理以及模型对相关过程的定量化表达方法。综合对比分析了国际上的Carnegie- Ames-Stanford Approach-CNP (CASA-CNP)、Community Land Model-CNP (CLM-CNP)和Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg-CNP (JSBACH-CNP)等碳、氮、磷耦合模型中磷影响植物光合作用与同化物分配过程、植物对磷的吸收过程、土壤中磷的转化过程以及生态系统磷输入与输出等过程的相关数学表达方法, 指出了模型算法的局限与不确定性以及未来模型发展与改进的方向。同时综合对比分析了CASA-CNP、CLM-CNP、JSBACH-CNP模型的基本特征, 总结了磷循环模型的建模方法, 为未来开展磷影响陆地生态系统碳循环的模型模拟研究提供了借鉴方法与参考思路。  相似文献   

6.
当代生态系统科学研究更加关注区域生态环境及生态系统状态变化的监测、评估、预测、预警及生态环境可持续管理.在深入理解陆地生态系统的要素、过程、功能、格局及其相互作用机理基础上,发展生态系统定量化描述方法和数值模拟技术,集成构建大陆尺度的多过程耦合-多技术集成-多目标应用的陆地生态系统数值模拟器已成为生态系统与全球变化...  相似文献   

7.
土地利用变化对区域碳源汇的影响研究进展   总被引:11,自引:0,他引:11  
马晓哲  王铮 《生态学报》2015,35(17):5898-5907
土地利用变化对陆地生态系统碳循环有着重要的影响,既可能成为碳源,也可能是碳汇。在国内外相关研究的基础上,综述了土地利用变化对全球及区域尺度上森林、草地和农业生态系统碳循环的影响。全球范围内,森林砍伐后向草地和农田的转化发挥碳源的作用,在毁林碳排放中占主导地位,其中热带地区森林转变为农田和草场的碳排放均高于温带和北方森林。另一方面,土地利用变化可促进森林的碳贮存,如退耕还林、改善森林管理等。各区域森林生态系统通过土地利用变化贮存碳的潜力存在显著差别,热带湿润和半湿润地区具有较大的碳汇潜力,而干旱地区减少碳排放的空间相对较少。开垦活动是影响草地生态系统碳储存最主要的人类活动,草地转变为农田伴随着土壤碳的流失。森林或草场转变为农田的过程伴随着植被和土壤碳储量的减少,生态系统碳储量降低,因此它是一个碳排放的过程。伴随着城市的扩张,农田向建设用地的转化也是一个碳排放的过程。当前评估土地利用变化影响的研究方法主要有遥感观测和遥感模型、统计估算、生态系统模型以及土地利用与生态系统模型的耦合。研究方法得到不断地完善和改进的同时,还存在着一些不确定性,因此需要建立统一的观测统计方法,降低数据中的不确定性;完善土地利用与生态系统模型的耦合研究;建立多尺度土地利用变化及生态系统综合技术方法体系;开展碳减排目标下土地利用最优化布局研究。  相似文献   

8.
王军邦  杨屹涵  左婵  顾峰雪  何洪林 《生态学报》2021,41(18):7085-7099
总初级生产力(GPP)是生态系统植被光合作用生成有机物的能力表征,是生态系统服务功能的基础,关系到区域社会经济可持续发展及区域生态安全。基于生态系统过程模型CEVSA2,应用中分辨率成像光谱仪(MODIS)卫星遥感的叶面积指数数据产品(MCD15A2H),以强迫法构建了遥感数据驱动的模型新版本——CEVSA-RS;基于CEVSA-RS模拟分析了气候变化和人类活动对中国陆地生态系统GPP时空变化的相对影响,从气候潜在总初级生产力(GPPCL)和现实总初级生产力(GPPRS)的大小和趋势两方面厘定了人类活动影响。2000至2017年全国平均潜在GPP(1016.36 gC m-2a-1)略高于对应现实GPP(962.85 gC m-2a-1),但存在明显的空间分异:长江以南大部、秦岭、太行山脉以东以及大兴安岭以东和长白山地区等森林植被覆盖区,现实GPP高于潜在GPP;而西部草地及灌丛等地区现实GPP低于潜在GPP。全国GPP呈显著增加趋势(P<0.05)...  相似文献   

9.
城市污泥应用于陆地生态系统研究进展   总被引:3,自引:0,他引:3  
白莉萍  伏亚萍 《生态学报》2009,29(1):416-426
随着城市化进程加快和人口剧增,城市污泥已成为世界许多城市面临的主要环境问题之一,且不合理的管理可引发严重的环境污染.城市污泥含有大量、微量元素和有机质,可能对土壤及其生产力有利,特别对退化土壤能进行有机修复,并改善土壤理化特性,譬如土壤结构和营养含量.目前,污泥作为一种有机肥料已成为普遍措施.但来自工业及生活污水的污泥常含有重金属、病原物及有毒有机物等,潜在的毒性可能对生态系统构成危险,因此必须经过污泥预处理才可安全施用.评述了近年来国内外污泥应用于陆地生态系统4个方面的主要研究进展:(1)污泥处理与处置方法;(2)污泥应用于农田、草地及森林生态系统;(3)污泥对土壤生态系统的影响,包括污泥对土壤理化性质、土壤酶及微生物的影响;(4)污泥应用的环境效应.提出未来我国污泥处置及利用需要重视的研究领域和方向.  相似文献   

10.
菌根真菌在陆地生态系统中的作用   总被引:12,自引:0,他引:12  
赵之伟 《生物多样性》1999,7(3):240-244
对菌根真菌在陆地生态系统中与植物共生、固定土壤中的营养元素及水分、作为动物的食物以及影响植物群落的演替和区系组成以及调节生态系统中的资源配置、维持系统的物种多样性等方面的生态作用进行了讨论。  相似文献   

11.
Land use effects on terrestrial carbon sources and sinks   总被引:3,自引:0,他引:3  
Current and past land use practices are critical in determining the distribution and size of global terrestrial carbon (C) sources and sinks. Althoughfossil fuel emissions dominate the anthropogenic perturbation of the global C cycle, land use still drives the largest portion of anthropogenic emissions in a number of tropical regions of Asia. The size of the emission flux owing to land use change is still the biggest uncertainty in the global C budget. The Intergovernmental Panel on Climate Change (IPCC) reported a flux term of 1.7 PgC@a-1 for 1990-1995 but more recent estimates suggest the magnitude of this source may be only of 0.96 PgC@a-1 for the 1990s. In addition, current and past land use practices are now thought to contribute to a large degree to the northern hemisphere terrestrial sink, and are the dominant driver for some regional sinks. However, mechanisms other than land use change need to be invoked in order to explain the inferred C sink in the tropics. Potential candidates are the carbon dioxide (CO2) fertilization and climate change; fertilization due to nitrogen (N) deposition is believed to be small or nil. Although the potential for managing C sinks is limited, improved land use management and new land uses such as reforestation and biomass fuel cropping, can further enhance current terrestrial C sinks. Best management practices in agriculture alone could sequester 0.4-0.8 PgC per year in soils if implemented globally. New methodologies to ensure verification and permanency of C sequestration need to be developed.  相似文献   

12.
Current and past land use practices are critical in determining the distribution and sizeof global terrestrial carbon (C) sources and sinks. Although fossil fuel emissions dominate the an-thropogenic perturbation of the global C cycle, land use still drives the largest portion of anthropo-genic emissions in a number of tropical regions of Asia. The size of the emission flux owing to landuse change is still the biggest uncertainty in the global C budget. The Intergovernmental Panel on Climate Change (IPCC) reported a flux term of 1.7 PgC·a~(-1) for 1990-1995 but more recent es-timates suggest the magnitude of this source may be only of 0.96 PgC·a~(-1) for the 1990s. In add-ition, current and past land use practices are now thought to contribute to a large degree to the northern hemisphere terrestrial sink, and are the dominant driver for some regional sinks. However,mechanisms other than land use change need to be invoked in order to explain the inferred C sink in the tropics. Potential candidates are the carbon dioxide (CO_2) fertilization and climate change;fertilization due to nitrogen (N) deposition is believed to be small or nil. Although the potential formanaging C sinks is limited, improved land use management and new land uses such as refores-tation and biomass fuel cropping, can further enhance current terrestrial C sinks. Best manage-ment practices in agriculture alone could sequester 0.4-0.8 PgC per year in soils if implemented globally. New methodologies to ensure verification and permanency of C sequestration need to be developed.  相似文献   

13.
The interest in national terrestrial ecosystem carbon budgets has been increasing because the Kyoto Protocol has included some terrestrial carbon sinks in a legally binding framework for controlling greenhouse gases emissions. Accurate quantification of the terrestrial carbon sink must account the interannual variations associated with climate variability and change. This study used a process‐based biogeochemical model and a remote sensing‐based production efficiency model to estimate the variations in net primary production (NPP), soil heterotrophic respiration (HR), and net ecosystem production (NEP) caused by climate variability and atmospheric CO2 increases in China during the period 1981–2000. The results show that China's terrestrial NPP varied between 2.86 and 3.37 Gt C yr?1 with a growth rate of 0.32% year?1 and HR varied between 2.89 and 3.21 Gt C yr?1 with a growth rate of 0.40% year?1 in the period 1981–1998. Whereas the increases in HR were related mainly to warming, the increases in NPP were attributed to increases in precipitation and atmospheric CO2. Net ecosystem production (NEP) varied between ?0.32 and 0.25 Gt C yr?1 with a mean value of 0.07 Gt C yr?1, leading to carbon accumulation of 0.79 Gt in vegetation and 0.43 Gt in soils during the period. To the interannual variations in NEP changes in NPP contributed more than HR in arid northern China but less in moist southern China. NEP had no a statistically significant trend, but the mean annual NEP for the 1990s was lower than for the 1980s as the increases in NEP in southern China were offset by the decreases in northern China. These estimates indicate that China's terrestrial ecosystems were taking up carbon but the capacity was undermined by the ongoing climate change. The estimated NEP related to climate variation and atmospheric CO2 increases may account for from 40 to 80% to the total terrestrial carbon sink in China.  相似文献   

14.
The present study provides an overview of existing literature on changes in soil organic carbon (SOC) of various terrestrial ecosystems in China. Datasets from the literature suggest that SOC stocks in forest, grassland, shrubland and cropland increased between the early 1980s and the early 2000s, amounting to (71±19) Tg·a−1. Conversion of marshland to cropland in the Sanjiang Plain of northeast China resulted in SOC loss of (6±2) Tg·a−1 during the same period. Nevertheless, large uncertainties exist in these estimates, especially for the SOC changes in the forest, shrubland and grassland. To reduce uncertainty, we suggest that future research should focus on: (i) identifying land use changes throughout China with high spatiotemporal resolution, and measuring the SOC loss and sequestration due to land use change; (ii) estimating the changes in SOC of shrubland and non-forest trees (i.e., cash, shelter and landscape trees); (iii) quantifying the impacts of grassland management on the SOC pool; (iv) evaluating carbon changes in deep soil layers; (v) projecting SOC sequestration potential; and (vi) developing carbon budget models for better estimating the changes in SOC of terrestrial ecosystems in China.  相似文献   

15.
植被生态系统对植被碳汇至关重要,是实现中国“碳中和”目标的重要路径之一。选择1981—2019年全球逐日NEP模拟数据产品,对1981—2019年中国植被碳源/汇时空演变进行分析,确定气候变化和人类活动对植被碳源/汇的影响区域,并量化生态修复治理工程对植被碳汇的成效。(1)通过使用BFAST模型监测NEP年际突变范围,确定2001年为时间断点,对比分析1981—2001年与2001—2019年NEP时空变化特征及驱动因素。(2)1981—2001年段植被碳汇大范围呈现递减趋势。2001—2019年,中国整体植被碳汇增加,尤其是北部地区NEP增长趋势显著。(3)1981—2001年中国北部地区植被固碳能力下降,受降水、辐射影响为主。2001—2019年,大部分地区NEP变化与降水相关性显著。(4)1981—2001年人类活动导致植被碳源/汇变化占总面积的4%,主要分布于东北地区和西南地区。2001—2019年中国植被碳源/汇变化由人类活动影响占比提高至26.23%,其中植被固碳能力提升占比25.22%。气候变化负向影响植被固碳能力较于1981—2001年减少约30%。说明人类活动在一定程...  相似文献   

16.
In terrestrial high‐latitude regions, observations indicate recent changes in snow cover, permafrost, and soil freeze–thaw transitions due to climate change. These modifications may result in temporal shifts in the growing season and the associated rates of terrestrial productivity. Changes in productivity will influence the ability of these ecosystems to sequester atmospheric CO2. We use the terrestrial ecosystem model (TEM), which simulates the soil thermal regime, in addition to terrestrial carbon (C), nitrogen and water dynamics, to explore these issues over the years 1960–2100 in extratropical regions (30–90°N). Our model simulations show decreases in snow cover and permafrost stability from 1960 to 2100. Decreases in snow cover agree well with National Oceanic and Atmospheric Administration satellite observations collected between the years 1972 and 2000, with Pearson rank correlation coefficients between 0.58 and 0.65. Model analyses also indicate a trend towards an earlier thaw date of frozen soils and the onset of the growing season in the spring by approximately 2–4 days from 1988 to 2000. Between 1988 and 2000, satellite records yield a slightly stronger trend in thaw and the onset of the growing season, averaging between 5 and 8 days earlier. In both, the TEM simulations and satellite records, trends in day of freeze in the autumn are weaker, such that overall increases in growing season length are due primarily to earlier thaw. Although regions with the longest snow cover duration displayed the greatest increase in growing season length, these regions maintained smaller increases in productivity and heterotrophic respiration than those regions with shorter duration of snow cover and less of an increase in growing season length. Concurrent with increases in growing season length, we found a reduction in soil C and increases in vegetation C, with greatest losses of soil C occurring in those areas with more vegetation, but simulations also suggest that this trend could reverse in the future. Our results reveal noteworthy changes in snow, permafrost, growing season length, productivity, and net C uptake, indicating that prediction of terrestrial C dynamics from one decade to the next will require that large‐scale models adequately take into account the corresponding changes in soil thermal regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号