首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
In this study, permeation of carbon dioxide (CO2) and methane (CH4) through the polycarbonate/polyethylene glycol (PC/PEG) blend membrane was investigated. The effect of PEG content (0–5 wt%) on the permeability and selectivity was studied. Permeability measurements were carried out at pressures of 1–7 bar and at room temperature. The membranes were characterized by Fourier transform infrared-attenuated total reflectance spectroscopy (FTIR-ATR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and density measurement. The results revealed that the PC/PEG blends are miscible/partially miscible without considerable micro-phase separation. The effect of PEG content and gas pressure on the diffusion and solubility of coefficients were also investigated and analyzed. It was concluded that the most influential parameter for the permeation is the diffusion coefficient of the gases. The permeability and selectivity decrease as the operating pressure and PEG content are increased. Furthermore, the results showed that the addition of 5 wt% of PEG into PC increases the CO2/CH4 selectivity from 26.6 ± 0.99 to 40.9 ± 2.14 (more than 53%) at 1 bar.  相似文献   

2.
Three soluble hyperbranched polyazomethines containing oligosiloxane end group HBP-PAZ-SiOn were successfully synthesized. HBP-PAZ-SiOns were used as modifiers of ethyl cellulose (EC) and polysulfone (PS) membranes. Blend membranes, HBP-PAZ-SiOn/EC and HBP-PAZ-SiOn/PS were prepared by blending the THF solution of HBP-PAZ-SiOn with ethanol solution of EC and dichloromethane solution of PS, respectively. Surprisingly, the permeabilities for CO2 of the blend membranes were more than 15–16 times higher than those of pure EC and PS membranes without any drop of pemselectivity to N2. This unusual improvement has been achieved by both enhancement of diffusivity for carbon dioxide and nitrogen by the oligosiloxane groups and enhancement of affinity of the amino groups with carbon dioxide at the end groups of HBP-PAZ-SiOn.  相似文献   

3.
4.
《分离科学与技术》2012,47(11):1606-1616
This paper reports on the properties of an MFI-type zeolite (silicalite-1) membrane synthesized on a novel tubular support with a 0.45 µm-pore size active layer consisting of zirconium and titanium oxides. Even though the membrane was synthesized by a pore plugging method, apart from penetrating into the support, the silicalite-1 crystals formed a 1.5 µm layer on top of the support. After the zeolite synthesis, the Si constituted more than 35% of the active layer of the support, which implies small size and close packing of the silicalite-1 crystals in the pores of the active layer.

Single gas permeation tests with N2 and CO2 revealed comparable N2 and CO2 permeances. On the other hand, CO2/N2 gas separation tests performed at different total feed pressures and feed compositions lead to CO2/N2 permselectivities as high as 26.0, with the corresponding CO2 permeance of 6 × 10?8 mol/m2 Pa s. The effects of changing the partial pressure gradient of CO2 across the membrane by means of varying the total feed pressure and the feed composition on the CO2 permeance and CO2/N2 permselectivity are discussed.  相似文献   

5.
《分离科学与技术》2012,47(13):1857-1865
Carbon dioxide is the most important anthropogenic greenhouse gas and it accounts for about 80% of all greenhouse gases (GHG). The global atmospheric CO2 concentrations have been increased significantly and have become the major source responsible for global warming; the greatest environmental challenge the world is facing now. The efforts to control the GHG emissions include the recovery of CO2 from flue gas. In this work, feasibility analysis, based on a single stage membrane process, has been carried out with an in-house membrane program interfaced within process simulation program (AspenHysys) to investigate the influence of process parameters on the energy demand and flue gas processing cost. A novel CO2-selective membrane with the facilitated transport mechanism has been employed to capture CO2 from the flue gas mixtures. The results show that a membrane process using the facilitated transport membrane can also be considered as an alternative CO2 capture process and it is possible to achieve more than 90% CO2 recovery and 90% CO2 purity in the permeate with reasonable energy consumption compared to amine absorption and other capture techniques.  相似文献   

6.
A novel membrane/adsorption hybrid system was proposed for air prepurification in large scale air separation units. Mathematical models were established for cocurrent and countercurrent flow patterns with crude nitrogen as purge stream to describe the membrane separation performance. The experimental and predicted results are in good agreement confirming the validity of the mathematical models. Effects of membrane properties and operation parameters on O2 recovery, N2 recovery, and membrane area requirement were investigated. For countercurrent flow pattern, O2 recovery and N2 recovery were larger than 98 and 99%, respectively, and membrane area requirement was less than 0.25?m2/m3?h?1 with feed side pressure of 0.6?MPa and the purge gas/feed gas ratio of 0.2.  相似文献   

7.
膜法分离二氧化碳研究现状及发展趋势   总被引:1,自引:0,他引:1  
高洁  郭斌  周建斌 《河北化工》2006,29(10):8-10
从膜法气体分离的优点出发,阐述了膜法分离CO2的原理、工艺流程,并将其应用于分离烟道气中的CO2.介绍了几种常见的分离CO2的膜材料,针对现有膜材料的缺点,提出了改进方法,展望了膜法分离CO2的发展方向.  相似文献   

8.
Nanocomposite polymer and ultrathin film membranes have shown great promise in enhancing gas permeation and selectivity properties by interfacially straining polymer matrices, yielding structures of higher free volume. However, undesired particle aggregation and short temporal stability remain a big challenge. In the present study, an “inverse” architecture to conventional polymer nanocomposites was investigated, in which the polymer phase poly(l-trimethylsilyl-1-propyne) (PTMSP) was interfacially and dimensionally constrained in nanoporous anodic aluminum oxide (AAO) membranes. While with this architecture the benefits of nanocomposite and ultrathin film membranes could be reproduced and improved upon, also the temporal stability could be enhanced substantially. Gas permeabilities of helium, nitrogen and carbon dioxide were increased over five-fold, and selectivities of CO2/He and CO2/N2 could be enhanced by 40% compared to the pristine bulk phase, while physical aging, caused by free-volume collapse, was reduced twenty-fold compared to ultrathin membranes.  相似文献   

9.
The sorption equilibria for CO2 and N2 in dry chitosan membrane at 20 and 30 ‡C were measured by a pressure decay method. The steady-state permeation rates for CO2 and N2 in dry and wet (swollen with water vapor) chitosan membranes at 20 and 30 ‡C were measured by a variable volume method. The sorption equilibrium for N2 obeyed Henry’s law, whereas that for CO2 was described apparently by a dual-mode sorption model. This non-linear sorption equilibrium for CO2 could be interpreted by the interaction of sorbed CO2 with the chitosan matrix expressed as a reversible reaction. The logarithm of the mean permeability coefficient for CO2 in dry chitosan membrane increased linearly with upstream gas pressure. A linear increase of the logarithmic mean permeability coefficient for CO2 with the pressure could be interpreted in terms of a modified free-volume model. The mean per-meability coefficient for N2 in dry chitosan membrane only slightly increased with upstream gas pressure. The per-meabilities for CO2 and N2 in wet chitosan membrane increased by 15 to 17 times and 11 to 15 times, respectively, as compared to those in the dry membrane.  相似文献   

10.
The La2NiO4-zeolite membrane was prepared by means of in situ hydrothermal synthesis. Techniques such as XRD, SEM-EDX, and BET were used to acquire information as related to the structure, morphology and the pore size distribution of the membrane. At room temperature, we observed a H2/CH4 separation factor of 9.2, considerably higher than the Knudsen diffusion value. With the simultaneous separation of CO and H2 in the membrane reactor, both CO2 and CH4 conversions were enhanced in the CH4/CO2 reforming reaction.  相似文献   

11.
Supported K2CO3/Co–MoS2 on activated carbon was prepared by a co-impregnation technique and has been characterized by X-ray diffraction (XRD) and BET. Active ingredients ranged from 39 to 66% and included molysulfide and cobalt sulfide. XRD analysis indicates that cobalt and molybdenum sulfides are found in the Co3S4 and Co9S8 phases. These catalysts were performance tested in a fixed-bed reactor under higher alcohol synthesis conditions, 2000–2400 psig and 270–330°C. Active chemicals on the carbon extrudates decreased the surface area dramatically, as measured by BET. Surprisingly, at the high level of active chemicals, alcohol productivity and selectivity were decreased. An increase in the reaction temperature led to a decrease in the selectivity of methanol and an increase in selectivity of hydrocarbons. Total alcohol productivity was also increased as gas hourly space velocity (GHSV) was increased. Co9S8 may play a role in the catalyst aging process. In prolonged reaction periods (140 h), sulfur is lost from the surface, possibly as H2S. The quantity of Co9S8 on the surface appears to increase as the catalyst ages.  相似文献   

12.
《分离科学与技术》2012,47(5):772-780
In this study, the performance enhancement of CO2 capture and separation by the SiO2 nanoparticles and surfactants is evaluated. The main objectives are to test the dispersion stability of nanofluids (DI water with nanoparticles and surfactants), to quantify the effect of the nanoparticles and surfactants on the CO2 capture and separation performance, and to find the optimum conditions of the nanoparticles and surfactants. It is found that the CO2 capture and separation performances are enhanced up to 13.1% and 7.8% at the nanoparticle concentration of 0.01 vol%, respectively. It is concluded that nanoparticles enhance both CO2 capture and separation rates, while the surfactants enhance the CO2 capture rate but they interrupt the CO2 separation rate.  相似文献   

13.
以商业化的Kapton型聚酰亚胺为前驱体制备炭膜,采用容量法研究了不同炭化温度制备的炭膜CO2吸附和扩散行为,并利用Sips模型对实验数据进行拟合,DA方程计算炭膜的孔结构参数,Fick扩散模型求取CO2在炭膜内的扩散系数,采用XRD分析探讨了炭膜的炭结构。结果表明,炭膜孔结构随着热解炭化温度的提高,孔径收缩,且当炭化温度从600℃升高到800℃,炭膜的微孔体积随炭化温度的升高而增大,而800℃以后,微孔体积随炭化温度的升高而下降。CO2在不同炭膜中的扩散系数约为1.04×10-13~8.56×10-12m2·s-1,在实验测定的压力范围内扩散系数随着平衡压力的增大呈现出先增大后减小的规律。  相似文献   

14.
《分离科学与技术》2012,47(8):1250-1261
Mixed matrix membranes (MMMs) consisting of multiwalled carbon nanotubes (MWCNTs) embedded within polyetherimide were prepared. Surfactants of different charges were utilized to disperse the nanotubes through a simple non-covalent approach. The characterization results suggest that proper selection of the dispersing agent contributed to better dispersion of nanotubes. The MMMs exhibited improved thermal stability and mechanical strength, which indicate the improvement of dispersion and compatibility within the polymer matrix. The resulting membrane exhibited permeance improvement of O2 and N2 as much as 87.7% and 120% respectively compared to that of neat polyetherimide. The results implied that Triton-X100 treated MWCNTs is a promising filler to enhance gas permeability.  相似文献   

15.
《分离科学与技术》2012,47(8):1609-1627
Abstract

In this study, active carbons prepared from almond and hazelnut shells under various experimental conditions were investigated. Merck-2514 and Merck-2184 active carbons were used for comparison. N2 (77 K) gas and CO2 (273 and 195 K) gas adsorptions were determined as comparison criteria. Regarding the specific surface area and micropore volume results obtained from these adsorption data, it is concluded that N2 (77 K) adsorption by itself is inadequate in the characterization of active carbons which are low-sized microporous dominated. In addition, it is concluded that it would be useful to investigate CO2 (195 and 273 K) adsorption. The iodine and methylene blue tests at 298 K were also applied for the characterization of the carbon adsorbents mentioned. From these data it was seen that the iodine test can be applied as a total porosity indicator and that the methylene blue test can be used as a developed microporosity indicator. These results indicate that the best adsorbents were those prepared from hazelnut shells. Depending on the preparation conditions, the physically activated carbon has an activation time up to 4 hours and has adsorption properties on the level of Merck commercial carbons.  相似文献   

16.
CO2 and CO adsorption on MFI type zeolites with different SiO2/Al2O3 ratios (ZSM-5(30), ZSM-5(50), ZSM-5(280), and silicalite) were investigated in this study by a static gravimetric analyzer for pure isotherms at 30°C, 65°C, 100°C, and 135°C over the pressure range of 0–10 atm. Adsorption capacity of CO increases with decreasing SiO2/Al2O3 ratios within ZSM-5. The adsorption of CO2 for decreasing SiO2/Al2O3 ratios, showed stronger adsorption at lower pressures and at higher pressures, the highest capacity varied from ZSM-5(50) to ZSM-5(30). ZSM-5(280) was found to have the highest selectivity for CO2 within the widest range of pressures and temperatures tested.  相似文献   

17.
CH4/CO2 reforming over Pt/ZrO2, Pt/CeO2 and Pt/ZrO2 with CeO2 was investigated at 2 MPa. Pt/ZrO2, which shows stable activity under 0.1 MPa, and Pt/CeO2 showed gradual deactivation with time at the high pressure. The deactivation was suppressed drastically on Pt/ZrO2 with CeO2 prepared by different impregnation order (co-impregnation of Pt and CeO2 on ZrO2, and consecutive impregnation of Pt and CeO2 on ZrO2). The amount of coke deposition was found insignificant and similar among all the catalysts (including Pt/ZrO2 and Pt/CeO2). Catalytic activity after the reaction for 24 h was in agreement with Pt particle size after the reaction for same period, indicating that the difference of the catalytic stability is mainly dependent on the extent of Pt aggregation through catalyst preparation, H2 reduction, and the CH4/CO2 reforming. Pt aggregation and the amount of coke deposition were least pronounced on (Pt–Ce)/ZrO2 prepared by impregnation of CeO2 on Pt/ZrO2 and the catalyst showed highest stability.  相似文献   

18.
Polyamide-b-ethylene (Pebax) is a promising material for membrane-based gas separation application with excellent CO2 capturing potential. Pebax is a rubbery elastomer which offers good mechanical support with its hard crystalline phase and excellent gas transport through its amorphous polyether phase. This review article includes recent advances in Pebax based membrane synthesis, solvent selection for membrane synthesis, compatible fillers with Pebax matrix and the improved gas separation performance of the prepared membranes. The literature review shows that Pebax based membranes are a good candidate for separation of CO2 from flue gases and can be used for commercial applications.  相似文献   

19.
A systematic study of the size effect of zirconia nanocrystals on nickel-catalyzed reforming of methane with CO2 shows that extremely stable Ni/ZrO2 catalysts are obtainable by hydrogen reduction of impregnated nickel nitrate on zirconia particles with sizes less than 25 nm. The same preparation method with larger particles of zirconia results in catalyst samples that deactivate rapidly in the reforming reaction. Comprehensive characterization with XRD, TPR/TPD, and TEM shows that the stable Ni/ZrO2 catalysts are better described as nanocomposites of size comparable to Ni metal (9-15 nm) and zirconia (7-25 nm) nanoparticles. The high percentage of the Ni-zirconia boundary or perimeter in the nanocomposite catalysts is believed to be crucial for the extremely stable catalytic activity.  相似文献   

20.
《分离科学与技术》2012,47(6):850-866
Methanol is an important raw material in industry and is commonly produced from syngas. The stoichiometric ratio (H2–CO2)/(CO + CO2) of the methanol synthesis reactor feed stream must be adjusted to approximately 2.1. In this study, the replacement of the solvent unit within a coal to methanol process by a pressure swing adsorption (PSA) unit is proposed. The PSA produces a hydrogen enriched stream, to adjust the stoichiometric ratio of the methanol feed stream, and simultaneously captures the carbon dioxide for future sequestration. The feed flow rate is sub divided into eight 4-bed PSA units, operated with a defined phase lag between them in order to flatten the products (composition and flow rate) oscillations. The results show that the stoichiometric adjustment is possible and that oscillations on the products flow rate and composition are reduced to less than 3%. A carbon dioxide stream of 95.15% is obtained with a recovery of 94.2% and a productivity of 82.7 mol CO2/kg/day. The power consumption of the global process is 119.7 MW, which includes the requirements for the rinse stream (64.4 MW) and the compression of the CO2 product to 110 bar for sequestration (55.3 MW).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号