首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Lawal  P. Stephenson  H. Yeung 《Fuel》2010,89(10):2791-2801
Post-combustion capture by chemical absorption using MEA solvent remains the only commercial technology for large scale CO2 capture for coal-fired power plants. This paper presents a study of the dynamic responses of a post-combustion CO2 capture plant by modelling and simulation. Such a plant consists mainly of the absorber (where CO2 is chemically absorbed) and the regenerator (where the chemical solvent is regenerated). Model development and validation are described followed by dynamic analysis of the absorber and regenerator columns linked together with recycle. The gPROMS (Process Systems Enterprise Ltd.) advanced process modelling environment has been used to implement the proposed work. The study gives insights into the operation of the absorber-regenerator combination with possible disturbances arising from integrated operation with a power generation plant. It is shown that the performance of the absorber is more sensitive to the molar L/G ratio than the actual flow rates of the liquid solvent and flue gas. In addition, the importance of appropriate water balance in the absorber column is shown. A step change of the reboiler duty indicates a slow response. A case involving the combination of two fundamental CO2 capture technologies (the partial oxyfuel mode in the furnace and the post-combustion solvent scrubbing) is studied. The flue gas composition was altered to mimic that observed with the combination. There was an initial sharp decrease in CO2 absorption level which may not be observed in steady-state simulations.  相似文献   

2.
In the CO2 capture process from coal-derived flue gas where amine solvents are used, the flue gas can entrain small liquid droplets into the gas stream leading to emission of the amine solvent. The entrained drops, or mist, will lead to high solvent losses and cause decreased CO2 capture performance. In order to reduce the emissions of the fine amine droplets from CO2 absorber, a novel method using charged colloidal gas aphron (CGA) generated by an anionic surfactant was developed. The CGA absorption process for MEA emission reduction was optimized by investigating the surfactant concentration, stirring speed of the CGA generator, and capture temperature. The results show a significant reduction of MEA emissions of over 50% in the flue gas stream exiting the absorber column of a pilot scale CO2 capture unit.  相似文献   

3.
In amine-based CO2 capture processes, aqueous amine solvent is circulated between absorber (CO2 absorption) and stripping (solvent regeneration) columns. To reduce solvent regeneration energy demand, a selective membrane can dewater and enrich the CO2 concentration in solution prior to the stripper, lowering steam requirements for solution heating. In this work, a facile synthesis strategy was developed to prepare faujasite (FAU) zeolite membranes built upon polydopamine (PDA) modified α-Al2O3 substrates. PDA facilitated the attachment of zeolite phases onto the substrate surface to form a 3 μm membrane layer. Membrane permeation flux of 4.45 kg m−2 h−1 and 95% rejection rate calculated by either CO2 loading or total alkalinity was achieved in dewatering of CO2 loaded 30 wt% monoethanolamine (MEA) solution. The effects of temperature on membrane dewatering performance and stability were investigated. This study highlights the potential for process integration of membrane technology in amine-based post-combustion CO2 capture operations.  相似文献   

4.
A. Lawal  M. Wang  P. Stephenson  H. Yeung 《Fuel》2009,88(12):2455-2462
Power generation from fossil fuel-fired power plants is the largest single source of CO2 emissions. Post combustion capture via chemical absorption is viewed as the most mature CO2 capture technique. This paper presents a study of the post combustion CO2 capture with monoethanolamine (MEA) based on dynamic modelling of the process. The aims of the project were to compare two different approaches (the equilibrium-based approach versus the rate-based approach) in modelling the absorber dynamically and to understand the dynamic behaviour of the absorber during part load operation and with disturbances from the stripper. A powerful modelling and simulation tool gPROMS was chosen to implement the proposed work. The study indicates that the rate-based model gives a better prediction of the chemical absorption process than the equilibrium-based model. The dynamic simulation of the absorber indicates normal absorber column operation could be maintained during part load operation by maintaining the ratio of the flow rates of the lean solvent and flue gas to the absorber. Disturbances in the CO2 loading of the lean solvent to the absorber significantly affect absorber performance. Further work will extend the dynamic modelling to the stripper for whole plant analysis.  相似文献   

5.
Global concentration of CO2 in the atmosphere is increasing rapidly. CO2 emissions have an impact on global climate change. Effective CO2 emission abatement strategies such as Carbon Capture and Storage (CCS) are required to combat this trend. There are three major approaches for CCS: post-combustion capture, pre-combustion capture and oxyfuel process. Post-combustion capture offers some advantages as existing combustion technologies can still be used without radical changes on them. This makes post-combustion capture easier to implement as a retrofit option (to existing power plants) compared to the other two approaches. Therefore, post-combustion capture is probably the first technology that will be deployed. This paper aims to provide a state-of-the-art assessment of the research work carried out so far in post-combustion capture with chemical absorption. The technology will be introduced first, followed by required preparation of flue gas from power plants to use this technology. The important research programmes worldwide and the experimental studies based on pilot plants will be reviewed. This is followed by an overview of various studies based on modelling and simulation. Then the focus is turned to review development of different solvents and process intensification. Based on these, we try to predict challenges and potential new developments from different aspects such as new solvents, pilot plants, process heat integration (to improve efficiency), modelling and simulation, process intensification and government policy impact.  相似文献   

6.
A pre-combustion CO2 capture system was modelled with three different membranes. It comprised an amine absorber for the elimination of H2S, high- and low-temperature water gas shift reactors for the conversion of CO to CO2 and a membrane to keep over 90% of the CO2 in the retentate. The absorber and equilibrium reactors were modelled using rigorous models, while the partial least squares model was used for three different types of membranes to predict the experimental results. The effectiveness of the modelling of the reactors and membranes was tested through comparison of simulated results with experimental data. The effects of operating pressure and membrane type are also discussed, and it was found that using a smaller membrane under high pressure lowered the membrane’s cost but also lowered energy recovery.  相似文献   

7.
In this article, the industrial process of CO2 capture using monoethanolamine as an aqueous solvent was probed carefully from the mass transfer viewpoint. The simulation of this process was done using Rate-Base model, based on two-film theory. The results were validated against real plant data. Compared to the operational unit, the error of calculating absorption percentage and CO2 loading was estimated around 2%. The liquid temperature profiles calculated by the model agree well with the real temperature along the absorption tower, emphasizing the accuracy of this model. Operational sensitivity analysis of absorption tower was also done with the aim of determining sensitive parameters for the optimized design of absorption tower and optimized operational conditions. Hence, the sensitivity analysis was done for the flow rate of gas, the flow rate of solvent, flue gas temperature, inlet solvent temperature, CO2 concentration in the flue gas, loading of inlet solvent, and MEA concentration in the solvent. CO2 absorption percentage, the profile of loading, liquid temperature profile and finally profile of CO2 mole fraction in gas phase along the absorption tower were studied. To elaborate mass transfer phenomena, enhancement factor, interfacial area, molar flux and liquid hold up were probed. The results show that regarding the CO2 absorption, the most important parameter was the gas flow rate. Comparing liquid temperature profiles showed that the most important parameter affecting the temperature of the rich solvent was MEA concentration.  相似文献   

8.
The CO2 post-combustion capture with amine solvents is modeled as a complex system interconnecting process energy consumption and solvent degradation and emission. Based on own experimental data, monoethanolamine degradation is included into a CO2 capture process model. The influence of operating conditions on solvent loss is validated with pilot plant data from literature. Predicted solvent consumption rates are in better agreement with plant data than any previous work, and pathways are discussed to further refine the model. Oxidative degradation in the absorber is the largest cause of solvent loss while thermal degradation does not appear as a major concern. Using a single model, the process exergy requirement decreases by 10.8% and the solvent loss by 11.1% compared to our base case. As a result, this model provides a practical tool to simultaneously minimize the process energy requirement and the solvent consumption in post-combustion CO2 capture plants with amine solvents.  相似文献   

9.
Given their unique and tunable properties as solvents, ionic liquids (ILs) have become a favorable solvent option in separation processes, particularly for capturing carbon dioxide (CO2). In this work, a simple method that can be used to screen the suitable IL candidates was implemented in our modified gas–liquid membrane contactor system. Solubilities, selectivities of CO2, nitrogen (N2), and oxygen (O2) gases in imidazolium-based ILs and its activity coefficients in water and monoethanolamine (MEA) were predicted using conductor-like screening model for real solvent (COSMO-RS) method over a wide range of temperature (298.15–348.15?K). Results from the analysis revealed that [emim] [NTf2] IL is a good candidate for further absorption process attributed to its good hydrophobicity and CO2/O2 selectivity characteristics. While their miscibility with pure MEA was somehow higher, utilizing the aqueous phase of MEA would be beneficial in this stage. Data on absorption performances and selectivity of CO2/O2 are scarce especially in gas–liquid membrane contactor system. Therefore, considering [emim] [NTf2] IL as a supporting material in supported ionic liquid membranes (SILMs), using aqueous phase of MEA as an absorbent would result in a great membrane-solvent combination system in furthering our gas–liquid membrane contactor process. In conclusion, COSMO-RS is a potentially great predictive utility to screen ILs for specified separation applications. In addition, this work provides useful results for the [emim] [NTf2]-SILMs to be extensively applied in the field of CO2 capture and selective O2 removal.  相似文献   

10.
The paper is devoted to the amine-based post-combustion carbon dioxide capture technology. The aim of the paper was to analyze the effect of varying flow conditions on the CO2 capture efficiency of the absorber column. As a research tool, a numerical model of the chemical absorption with aqueous monoethanolamine solution in a packed bed was employed. A complex physio-chemical process including two-phase flow hydrodynamics, heat transfer, and absorption chemistry was simulated by Ansys Fluent commercial software. The parametric study was focused on CO2 capture efficiency in terms of varying loads of amine solvent (liquid) and flue gas. The corresponding changes of liquid holdup, species concentration, temperature and reaction rate distributions are discussed in detail allowing to better understand the absorption column operation. The simulation results have shown clearly the mutual interactions of partial processes and the sensitivity of the system to varying column loads. They have been found to be useful in defining the optimal ranges of operational parameters.  相似文献   

11.
Amine and other liquid solvent CO2 capture systems capture have historically been developed in the oil and gas industry with a different emphasis to that expected for fossil fuel power generation with post-combustion capture. These types of units are now being adapted for combustion flue gas scrubbing for which they need to be designed to operate at lower CO2 removal rates - around 85-90% and to be integrated with CO2 compression systems. They also need to be operated as part of a complete power plant with the overall objective of turning fuel into low-carbon electricity.The performance optimisation approach for solvents being considered for post-combustion capture in power generation therefore needs to be updated to take into account integration with the power cycle and the compression train. The most appropriate metric for solvent assessment is the overall penalty on electricity output, rather than simply the thermal energy of regeneration of the solvent used.Methodologies to evaluate solvent performance that have been reported in the literature are first reviewed. The results of the model of a steam power cycle integrated with the compression system focusing on key parameters of the post-combustion capture plant - solvent energy of regeneration, solvent regeneration temperature and desorber pressure - are then presented. The model includes a rigorous thermodynamic integration of the heat available in the capture and compression units into the power cycle for a range of different solvents, and shows that the electricity output penalty of steam extraction has a strong dependence on solvent thermal stability and the temperature available for heat recovery. A method is provided for assessing the overall electricity output penalty (EOP), expressed as total kWh of lost output per tonne of CO2 captured including ancillary power and compression, for likely combinations of these three key post-combustion process parameters. This correlation provides a more representative method for comparing post-combustion capture technology options than the use of single parameters such as solvent heat of regeneration.  相似文献   

12.
Fossil fuel power plants are one of the major sources of electricity generation, although invariably release greenhouse gases. Due to international treaties and countries regulations, CO2 emissions reduction is increasingly becoming key in the generators’ economics. NGCC power plants constitute a widely used generation technology, from which CO2 capture through a post-combustion and MEA absorption option constitutes a technological challenge due to the low concentration of pollutants in the flue gas and the high energy requirements of the sequestration process.  相似文献   

13.
The world will need greatly increased energy supply in the future for sustained economic growth, but the related CO2 emissions and the resulting climate changes are becoming major concerns. CO2 is one of the most important greenhouse gases that is said to be responsible for approximately 60% of the global warming. Along with improvement of energy efficiency and increased use of renewable energy sources, carbon capture and sequestration (CCS) is expected to play a major role in curbing the greenhouse gas emissions on a global scale. This article reviews the various options and technologies for CO2 capture, specifically for stationary power generation sources. Many options exist for carbon dioxide capture from such sources, which vary with power plant types, and include post-combustion capture, pre-combustion capture, oxy fuel combustion capture, and chemical looping combustion capture. Various carbon dioxide separation technologies can be utilized with these options, such as chemical absorption, physical absorption, adsorption, and membrane separation. Most of these capture technologies are still at early stages of development. Recent progress and remaining challenges for the various CO2 capture options and technologies are reviewed in terms of capacity, selectivity, stability, energy requirements, etc. Hybrid and modified systems hold huge future potentials, but significant progress is required in materials synthesis and stability, and implementations of these systems on demonstration plants are needed. Improvements and progress made through applications of process systems engineering concepts and tools are highlighted and current gaps in the knowledge are also mentioned. Finally, some recommendations are made for future research directions.  相似文献   

14.
Modelling work related to carbon dioxide (CO2) capture technologies is of great importance with respect to the design, control, and optimization of the capture process. Development of dynamic models as such is important since there is much information embedded with the dynamics of a plant which cannot be studied with steady state models. A model for the absorption column of a post-combustion CO2 capture plant is developed following the rate based approach to represent heat and mass transfer. The Kent–Eisenberg model is used to compute the transfer and generation rates of the species. Sensitivity of the model for different physiochemical property correlations is analyzed. The predictions of the dynamic model for the capture plant start-up scenario and operation of the absorption column under varying operating conditions in the up-stream power plant and the down-stream stripping column are presented. Predictions of the transient behaviour of the developed absorber model appear realistic and comply with standard steady state models.  相似文献   

15.
Among carbon capture and storage (CCS), the post-combustion capture of carbon dioxide (CO2) by means of chemical absorption is actually the most developed process. Steady state process simulation turned out as a powerful tool for the design of such CO2 scrubbers. Besides steady state modeling, transient process simulations deliver valuable information on the dynamic behavior of the system. Dynamic interactions of the power plant with the CO2 separation plant can be described by such models. Within this work a dynamic process simulation model of the absorption unit of a CO2 separation plant was developed. For describing the chemical absorption of CO2 into an aqueous monoethanolamine solution a rate based approach was used. All models were developed within the Aspen Custom Modeler® simulation environment. Thermo physical properties as well as transport properties were taken from the electrolyte non-random-two-liquid model provided by the Aspen Properties® database. Within this work two simulation cases are presented. In a first simulation the inlet temperature of the flue gas and the lean solvent into the absorber column was changed. The results were validated by using experimental data from the CO2SEPPL test rig located at the Dürnrohr power station. In a second simulation the flue gas flow to the separation plant was increased. Due to the unavailability of experimental data a validation of the results from the second simulation could not be achieved.  相似文献   

16.
Amine is one of candidate solvents that can be used for CO2 recovery from the flue gas by conventional chemical absorption/desorption process. In this work, we analyzed the impact of different amine absorbents and their concentrations, the absorber and stripper column heights and the operating conditions on the cost of CO2 recovery plant for post-combustion CO2 removal. For each amine solvent, the optimum number of stages for the absorber and stripper columns, and the optimum absorbent concentration, i.e., the ones that give the minimum cost for CO2 removed, is determined by response surface optimization. Our results suggest that CO2 recovery with 48 wt% DGA requires the lowest CO2 removal cost of $43.06/ton of CO2 with the following design and operating conditions: a 20-stage absorber column and a 7-stage stripper column, 26 m3/h of solvent circulation rate, 1903 kW of reboiler duty, and 99°C as the regenerator-inlet temperature.  相似文献   

17.
This paper deals with the modeling and optimization of the chemical absorption process to CO2 removal using monoethanolamine (MEA) aqueous solution. Precisely, an optimization mathematical model is proposed to determine the best operating conditions of the CO2 post-combustion process in order to maximize the CO2 removal efficiency. Certainly, the following two objective functions are considered for maximization: (a) ratio between the total absorbed CO2 and the total heating and cooling utilities and (b) ratio between total absorbed CO2 and the total amine flow-rate.Temperature, composition and flow-rate profiles of the aqueous solution and gas streams along the absorber and regenerator as well as the reboiler and condenser duties are considered as optimization variables. The number of trays or height equivalent to a theoretical plate (HETP) on the absorber and regenerator columns as well as the CO2 composition in flue gas are treated as model parameters. Correlations used to compute physical-chemical properties of the aqueous amine solution are taken from different specialized literature and are valid for a wide range of operating conditions. For the modeling, both columns (absorber and regenerator) are divided into a number of segments assuming that liquid and gas phases are well mixed.GAMS (General Algebraic Modeling System) and CONOPT are used, respectively, to implement and to solve the resulting mathematical model.The robustness and computational performance of the proposed model and a detailed discussion of the optimization results will be presented through different case studies. Finally, the proposed model cannot only be used as optimizer but also as a simulator by fixing the degree of freedom of the equation system.  相似文献   

18.
The effect of the presence of monoethanolamine (MEA) degradation products on membrane hollow fibers was investigated using untreated polypropylene (PP) as a model material. Common amine oxidative degradation products were added to MEA to simulate a degraded solution. The effect of these degradation products on the membrane gas absorption process using PP hollow fiber membrane was quantified. When PP membrane which has been exposed to amine degradation products is used in a membrane gas absorption contactor, the mass transfer rate of CO2 is reduced relative to the use of unexposed PP. It was found that the presence of oxalic acid reduced the mass transfer rate of CO2 in MEA most significantly followed by formic acid and then acetic acid. These acids are believed to adsorb into the PP, altering the surface properties and reducing the hydrophobicity of the membrane. This in turn increases the degree of wetting of the membrane pores. The membrane was characterized before and after use in a membrane gas absorption contactor containing degraded MEA solvent and studies showed that membrane pore wetting increased by 22-31% after 69 h of use. SEM images and XPS spectra of exposed PP membrane indicate that wetting may be due to both morphological and chemical changes in the membrane due to contact with the solvent. This study highlights the need to consider reductions in the mass transfer rate of membrane gas absorption processes associated with inevitable changes in the solvent composition that comes with prolonged use.  相似文献   

19.
The purpose of the present work is to investigate novel approaches, materials, and molecules for the abatement of carbon dioxide (CO2) at the pre-combustion stage of gasification-based power generation point sources. The capture/separation step for CO2 from large point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the Office of Research and Development of the National Energy Technology Laboratory possess the potential for improved efficiency and reduced costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the present research is focused on the capture/separation of carbon dioxide from fuel gas (pre-combustion gas) from processes such as the Integrated Gasification Combined Cycle (IGCC) process. For such applications, novel concepts are being developed in wet scrubbing with physical sorption, chemical sorption with solid sorbents, and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an “ideal” solvent has led to the study of the solubility and mass transfer properties of various solvents. Pertaining to another separation technology, fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. Finally, processes based on dry, regenerable sorbents are additional techniques for CO2 capture from fuel gas. An overview of these novel techniques is presented along with a research progress status of technologies related to membranes and physical solvents.  相似文献   

20.
CO2 Capture in a Bubble‐Column Scrubber Bubble columns are widely used in industry, such as on operations of reaction, fermentation, crystallization, desorption, and absorption. They can be operated in batch, continuously, or in semi‐batch, as well as in two or three phases. With the advantages of easy operation, simple structure, high mass transfer efficiency, high absorption factor, and low energy consumption, bubble columns have attracted wide attention in the industry. In recent years, as the carbon dioxide capture, storage, and regeneration are urgent issues, CCS and CCU have been used as the key point to solve greenhouse effect. This plays a great role in CO2 capture and storage in thermal power plants, in which the CCS capture and regeneration account for 70 % of the power generation cost. How to achieve effective capture and regeneration has become a topical subject in the energy saving and carbon reduction. Among various technologies of CO2 capture, absorption is the most mature, and MEA is used most widely. Although the capture of acid gases is still dominated by filling towers, many recent studies have confirmed the advantages of bubble towers that prevail over filling towers or other appliances. Thus, bubble columns have been adopted as the absorber and MEA as the absorbent for the new attempt of CO2 capture. The operation variables include CO2 concentration, pH, temperature, air flow rate, available gas‐liquid flow rate ratio, absorption efficiency, absorption velocity, overall mass transfer coefficient, and absorption factor, which are the important parameters for the design and operation of absorber. This study adopts the Taguchi experiment design to obtain the priority of parameter type and the optimal parameters of bubble towers for CO2 capture, so as to achieve energy saving and carbon reduction. DOI: 10.1002/ceat.201400240 CO2 Capture Using Monoethanolamine in a Bubble‐Column Scrubber Pao‐Chi Chen*, Yi Xin Luo, Pao Wein Cai Chem. Eng. Technol. 2015 , 38 (2), 274–282.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号