首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
光催化技术在常温下能够直接利用太阳能来驱动反应, 已成为一种理想的环境污染治理和洁净能源生产技术. 但是比较多的限制条件阻碍了光催化发展和实际应用, 如何有效解决这些限制因素成为光催化技术走向工业化应用必须解决的问题. 目前光催化材料研究存在的问题主要包括: (1)研究工作主要集中的粉体催化剂存在分离困难、难以重复利用的缺点, 开发与基底结合牢固的薄膜材料是十分必要的; (2)光催化材料本身的光响应范围影响光催化材料的应用, 拓宽催化剂材料的光吸收范围是亟待解决的; (3)光生电子和空穴的复合问题是影响光催化剂催化活性的主要因素之一, 很多方法被用来阻止电子-空穴对的复合, 如: 金属和非金属的掺杂、贵金属修饰、异质结、新型催化剂结构的设计等, 如何设计促进催化剂光生电子和空穴的分离成为光催化技术应用的重要问题.介孔单晶TiO2通过自组装的方法被制备, 成为TiO2的一种新结构材料. 介孔单晶TiO2结合了介孔材料的大比表面积、单晶材料的电荷传输快等优点, 对于光催化性能有了很大的提高. 目前介孔单晶TiO2主要是以粉体的形式存在, 但是粉体TiO2的应用受到多方面的影响, 如: 难回收不易重复利用, 与电催化结合难, 不能借助电催化提高电荷分离效率等. TiO2薄膜能够解决粉体的不足, 近年来, TiO2光催化薄膜得到广泛的研究, TiO2薄膜的制备方法很多, 主要有液相制备方法、物理气相沉积法、化学气相沉积法、电化学方法、溅射法等. TiO2薄膜主要是以纳米颗粒的形式沉积在基底上, 并且多为多晶和无定形. 而对于介孔单晶TiO2薄膜的制备和研究还没有报道. 我们通过直接焙烧一步法制备了介孔单晶TiO2薄膜, 并对TiO2薄膜的生长情况、表面结构、TiO2晶相和晶体完整程度的变化对性能的影响进行了研究. 通过调变Ti与F的比例和煅烧温度, 研究不同的制备条件对其性能的影响, 从而制备高活性TiO2薄膜. 为了进一步提高介孔单晶TiO2薄膜的活性和拓展其吸收光谱范围, 使用高温热解自组装技术一步法制备了贵金属Au负载的介孔单价TiO2薄膜, Au纳米颗粒跟TiO2有较好的结合度. 在可见光照射下, Au/TiO2异质结构中Au表面由等离子体共振效应产生的活泼电子会注入TiO2导带, 使光生电子和空穴得到分离; 同时Au具有特殊的可见光等离子体共振效应能显著改善TiO2类宽带隙半导体的可见光响应性能.实验用还原Cr(Ⅵ)作为探针反应, 考察不同Au含量对光催化性能的影响.  相似文献   

2.
钒离子掺杂对TiO2光催化剂薄膜催化活性的影响   总被引:4,自引:0,他引:4  
采用溶胶凝胶工艺在普通玻璃表面制备了钒离子非均匀掺杂的TiO2薄膜,运用XRD研究了其光催化复合薄膜的表面特征.以光催化降解甲基橙溶液为模型反应,表征薄膜的光催化活性,结果表明,将钒离子富集在TiO2薄膜内部时,最佳掺杂浓度为1.0%(V/Ti原子百分比),最佳降解表观速率常数为7.44×10-3min-1,约是纯TiO2的2.3倍,有效地提高了TiO2半导体的光催化效率.通过XPS与电化学方法进行分析,说明将钒离子富集在TiO2薄膜内部十分有利于电子-空穴的分离,增强了光生电子与空穴的分离效率.  相似文献   

3.
镧掺杂二氧化钛光催化性能的研究   总被引:7,自引:0,他引:7  
通过在TiO2晶格中掺杂La2O3,考察不同的La2O3掺杂量对光催化活性的影响,找出了La2O3的最佳掺杂量.实验结果表明由于进入TiO2晶格中的La2O3使TiO2晶格发生畸变,减少了光生电子-空穴对的复合率,提高了催化剂的光催化效率.  相似文献   

4.
田野  桑换新  王希涛 《催化学报》2012,33(8):1395-1401
以钛酸丁酯为前驱体,以NaH2PO4为掺杂离子给体,采用溶胶-凝胶法制备了系列P掺杂的TiO2光催化剂,运用N2吸附-脱附、透射电子显微镜、X射线衍射、傅里叶变换红外吸收光谱、激光拉曼光谱、紫外-可见光漫反射等技术对催化剂进行了表征.结果表明,适量掺杂的P可以进入TiO2骨架中,而掺杂量过高时,P将溶解于TiO2晶格间隙中;P掺杂后的TiO2均为具有介孔结构的锐钛矿晶型纳米颗粒,其晶粒变小,分散度明显提高.适量P掺杂增大样品的比表面积,并使得TiO2禁带内引入杂质能级,降低了禁带能量,增加了光生电子和空穴的分离性能,提高了TiO2的吸光性能.光催化甘油水溶液制氢反应结果表明,P掺杂的TiO2表现出远高于纯TiO2的光催化活性;5%P掺杂样品在紫外光和模拟太阳光辐射下,其最高产氢速率可分别达1838和209μmol/(g.h).这与掺P后晶粒变小、比表面积增大、禁带能量降低以及光生电子和空穴的分离性能增加有关.  相似文献   

5.
以钛酸四异丙酯为钛源, 用水热法合成制备了具有典型锐钛矿晶型的TiO2纳米材料. 采用金属镍掺杂和表面包覆一层氧化钕, 对TiO2薄膜电极进行改性研究. 实验结果表明, 所制备纳米TiO2颗粒较均匀, 粒径约为17~18 nm. 经镍掺杂后, 颗粒团聚粒径明显增大, 但是仍保持均匀状态和多孔结构. 与改性前的TiO2薄膜电极相比, 金属掺杂和表面包覆有助于光生电子和空穴有效地分离, 电池的短路光电流提高了16%, 光电转换效率提高了17%.  相似文献   

6.
半导体光生电荷分离是光催化过程中的关键步骤之一,其效率极大地影响了最终光催化性能.将TiO2纳米片与石墨烯复合,能够促进TiO2中光生电子和空穴的分离,从而提高其光催化活性.为了研究光生电荷的分离对TiO2/石墨烯复合材料光催化性能的影响,通过调控TiO2纳米片的尺寸来调节TiO2/石墨烯复合材料中光生电荷分离的能力,然后研究其对TiO2/石墨烯复合材料光催化性能的影响.合成了一系列不同厚度的TiO2纳米片,将其与石墨烯复合,并通过光沉积负载Pt纳米颗粒作为助催化剂,用于光催化产氢.实验结果显示,随着TiO2纳米片厚度减小,其与石墨烯形成的复合结构的光催化性能显著提高.这主要是由于TiO2纳米片厚度减小时,光生电子沿厚度方向穿过TiO2纳米片迁移到石墨烯的距离缩短,从而减少了光生电子在迁移过程中与空穴的复合;同时TiO2纳米片厚度减小使其比表面积增大,使得TiO2/石墨烯界面面积增大,从而使石墨烯更好地分离出TiO2中的光生电子,有更多的光生电子到达石墨烯参与催化反应,提高TiO2/石墨烯复合材料的光催化性能.此研究表明通过控制TiO2纳米片的尺寸来调控TiO2/石墨烯复合材料中光生电子和空穴的分离,是显著提高其光催化性能的有效途径.  相似文献   

7.
采用简单的两相分离的水解-溶剂热法,以硫脲为非金属原料,可控地制备了N,S共掺杂的纳米TiO2。所获得的纳米TiO2平均粒径为10 nm、粒径分布集中,且分散性好。N,S共掺杂拓展了纳米TiO2对可见光的响应范围。气氛可控的表面光电压谱(SPS)的测试结果表明,N,S共掺杂引起的表面态能够捕获光生空穴,进而有利于光生电荷分离。在可见光催化氧化水产氧及降解污染物乙醛的过程中,共掺杂的纳米TiO2表现出了高的活性,甚至优越于N掺杂的。这主要归因于N,S共掺杂的纳米TiO2分散性好、可见光吸收强和光生电荷分离高。  相似文献   

8.
Fe3+/V5+/TiO2复合纳米微粒光催化性能的研究   总被引:29,自引:1,他引:29  
采用溶胶凝胶法制备了Fe^3 /V^5 /TiO2复合纳米微粒作为光催化剂。光降解反应结果表明,其掺杂催化剂Fe^3 /V^5 /TiO2的光催化活性明显提高。光电化学研究显示,铁离子可以成为电荷陷阱,促进空穴的界面传递反应。适量钒离子掺杂使TiO2电极的光电流升高,导带中电子浓度的增大,加快了界面的电子传递反应。共掺杂催化剂中,Fe^3 、V^5 分别提供了空穴与电子的陷阱,同时加快了电子与空穴的界面传递反应,从 更有效地提高光催化活性。双组份共掺杂为提高TiO2光催化活性提供新的途径。  相似文献   

9.
高效TiO2基光催化材料的开发一直是催化领域的研究热点,主要的策略是如何有效地分离光生载流子.制备多晶相的TiO2材料可引入异质/相结结构使电子与空穴朝不同方向移动,从而避免电子与空穴复合;另外,在TiO2中掺杂其他金属或非金属也可以有效地降低电子与空穴的复合率,掺杂的元素作为电子捕获阱俘获光生电子,以实现电子空穴的有效分离.近些年,作为一种全新的掺杂剂,氧空穴可以有效改善TiO2的光催化活性,所制TiO2具有可见光的全光谱吸收能力,因此该类TiO2呈现出黑色.通过上述方法均可以制备出高活性TiO2基光催化材料,如果能够将这些方法耦合一起,则可能制备出活性更高的光催化剂.因此,本文将异相结结构和空穴掺杂耦合起来,用多孔钛酸盐衍生物在H2中高温焙烧制得一种全新的黑色TiO2(B)/锐钛矿双晶TiO2–x纳米纤维.不同于其他TiO2基光催化材料,该样品仅由Ti和O元素组成,通过Ti和O元素的组合,形成了双晶结构和空穴掺杂两种特殊的结构,借助场发射(FESEM)、拉曼光谱(Raman)、氮气物理吸脱附、X射线光电子能谱(XPS)、热重(TG)、紫外可见漫反射光谱(UV-Vis)和荧光光谱(PL)等表征分析了样品的结构及其光催化性能间构效关系. FESEM结果显示,黑色TiO2(B)/锐钛矿双晶TiO2–x为长1–5mm、宽0.2mm的纤维结构, Raman结果表明,锐钛矿相在特征波段(140 cm–1左右)和TiO2(B)的特征波段(220–260 cm–1)均发生蓝移,说明该两相中均存在氧空穴;该样表面未检测到Ti3+,因此氧空穴可能分散在TiO2(B)和锐钛矿相的体相中.根据黑色TiO2(B)/锐钛矿双晶TiO2–x和白色TiO2(B)/锐钛矿双晶TiO2的失重差,估算出前者的O/Ti原子比为1.97.光催化降解甲基橙实验结果显示,黑色TiO2(B)/锐钛矿双晶TiO2–x的光催化活性是白色双晶TiO2的4.2倍,锐钛矿TiO2的10.5倍,且连续反应10次后未出现失活现象,显示出了良好的光催化稳定性.前期,我们已经证明了白色TiO2(B)/锐钛矿双晶TiO2由于具有TiO2(B)和锐钛矿的异相结结构,致使其电子空穴有效地分离,从而表现出优异的光催化活性;本文的PL结果显示,由于氧空穴的引入,异相结与氧空穴两者共同作用,进一步促进了黑色TiO2(B)/锐钛矿双晶TiO2–x电子与空穴的有效分离,因此黑色TiO2(B)/锐钛矿双晶TiO2–x表现出高的光催化活性.由于其特殊的结构,黑色TiO2(B)/锐钛矿双晶TiO2–x纳米纤维将在环境与能源领域表现出良好的应用前景.  相似文献   

10.
光催化是一种理想的应对全球能源短缺和环境污染问题的绿色化学技术,可以实现有机物降解、水分解和二氧化碳光还原等.光催化反应效率受诸多因素影响,其中光生载流子(电子和空穴)的分离和传输具有至关重要的作用.以往研究表明,构筑多元复合光催化材料体系有利于光生电子和空穴有效分离和传递,促进催化剂表面的还原和氧化反应,从而提高其光催化效率.基于以上考虑,我们提出了一种新型的石墨烯/电气石/TiO2三元复合光催化材料体系,其中TiO2因其价格低廉、无毒和抗光腐蚀等优点而被广泛用作光催化材料;石墨烯(G)拥有独特的二维结构、高的电子迁移率、大的比表面积,是一种优异的催化剂载体;电气石(T)的一个重要性质是表面存在自发极化的静电场,该静电场将会影响光激发载流子的分离、传递和光催化反应过程.利用水热法合成了不同成分的石墨烯/电气石/TiO2三元复合材料体系.为了对比研究石墨烯表面电荷性质的影响,其中一组的石墨烯(氧化石墨)为直接采用改良的Hummers法所制备,其表面带负电;另一组的石墨烯经聚二烯丙基二甲基氯化铵(PDDA)修饰,使其表面带正电.X射线衍射结果显示,三元复合材料中TiO2为锐钛矿相,其结晶性没有因为与石墨烯和电气石的复合而受到影响.扫描和透射电子显微分析表明,TiO2的平均颗粒大小为15 nm左右,并且与石墨烯和电气石均匀复合.傅里叶变换红外光谱和zeta电位表征分析证实,PDDA可以有效地对石墨烯进行功能化改性,使其表面带正电.紫外-可见分光光谱显示,石墨烯/电气石/TiO2三元复合材料与TiO2的吸收带边一致,复合材料中石墨烯和电气石并没有改变TiO2的光吸收特征.光催化降解异丙醇实验表明,石墨烯/电气石/TiO2三元复合材料优于单纯的TiO2、石墨烯/TiO2以及电气石/TiO2二元复合材料,当石墨烯和电气石的质量百分比分别为0.5%和5%时,三元复合材料降解异丙醇产生丙酮的速率达到最高(223μmol/h).特别值得指出的是,由表面带负电的石墨烯组成的复合材料比由带正电荷的PDDA-石墨烯组成的复合材料具有更高的光催化性能,原因如下:在水溶液中显示正zeta电位值的TiO2与带负电的石墨烯/电气石复合物静电吸引而均匀紧密复合,有利于TiO2中光生电子和空穴的快速分离和传递,从而使得石墨烯/电气石/TiO2三元复合材料具有较高的光催化性能;而带正电的PDDA-石墨烯/电气石复合物和TiO2颗粒相互排斥而不宜复合,导致PDDA-石墨烯基复合材料的光催化活性降低.机理研究揭示,在三元复合材料光催化降解异丙醇的反应中起主要作用的是光生电子和空穴.基于以上研究结果,我们提出了三元复合材料光催化降解异丙醇的反应机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号