首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A kind of polyhedral oligomeric silsesquioxanes (POSS) containing the propoxyl‐epoxy and phenyl groups (pr‐ep‐Ph‐POSS) was synthesized via hydrolytic condensation reaction. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry identified the structure of the pr‐ep‐Ph‐POSS, including major caged Si6O9 (T6), Si10O15 (T10), Si12O18 (T12), etc. The pr‐ep‐Ph‐POSS was applied into the epoxy resin to achieve EP/pr‐ep‐Ph‐POSS composites. Thermogravimetric analysis indicated that EP/pr‐ep‐Ph‐POSS showed excellent thermal properties than pure EP. The fire behaviors of EP/pr‐ep‐Ph‐POSS composites were evaluated based on the cone calorimetry, limiting oxygen index (LOI), UL‐94 vertical burning test, and smoke density test. The smoke density decreased by ~30%, the LOI value reached to 26.4%, dripping was inhibited, and the peak of heat release rate decreased by ~62%. X‐ray photoelectron spectroscopy analysis and FTIR indicated that protective‐barrier effect is the main flame‐retardant mode of action for pr‐ep‐Ph‐POSS, due to the formation of the Si‐O‐Si, Si‐O‐C, and Si‐C condensed phase, which improve the thermal stability, strength, and integrity of the char layer.  相似文献   

2.
《先进技术聚合物》2018,29(1):497-506
A novel phosphorus‐containing, nitrogen‐containing, and sulfur‐containing reactive flame retardant (BPD) was successfully synthesized by 1‐pot reaction. The intrinsic flame‐retardant epoxy resins were prepared by blending different content of BPD with diglycidyl ether of bisphenol‐A (DGEBA). Thermal stability, flame‐retardant properties, and combustion behaviors of EP/BPD thermosets were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limited oxygen index (LOI) measurement, UL94 vertical burning test, and cone calorimeter test. The flame‐retardant mechanism of BPD was studied by TGA/infrared spectrometry (TGA‐FTIR), pyrolysis‐gas chromatography/mass spectrometry (Py‐GC/MS), morphology, and chemical component analysis of the char residues. The results demonstrated that EP/BPD thermosets not only exhibited outstanding flame retardancy but also kept high glass transition temperature. EP/BPD‐1.0 thermoset achieved LOI value of 39.1% and UL94 V‐0 rating. In comparison to pure epoxy thermoset, the average of heat release rate (av‐HRR), total heat release (THR), and total smoke release (TSR) of EP/BPD‐1.0 thermoset were decreased by 35.8%, 36.5% and 16.5%, respectively. Although the phosphorus content of EP/BPD‐0.75 thermoset was lower than that of EP/DOPO thermoset, EP/BPD‐0.75 thermoset exhibited better flame retardancy than EP/DOPO thermoset. The significant improvement of flame retardancy of EP/BPD thermosets was ascribed to the blocking effect of phosphorus‐rich intumescent char in condensed phase, and the quenching and diluting effects of abundant phosphorus‐containing free radicals and nitrogen/sulfur‐containing inert gases in gaseous phase. There was flame‐retardant synergism between phosphorus, nitrogen, and sulfur of BPD.  相似文献   

3.
A novel phosphorus‐containing aralkyl novolac (Ar‐DOPO‐N) was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) first with terephthaldicarboxaldehyde and subsequently with phenol. The chemical structures of the synthesized compounds were characterized with Fourier transform infrared, 1H and 31P NMR, and elemental analysis. Ar‐DOPO‐N blended with phenol formaldehyde novolac was used as a curing agent for o‐cresol formaldehyde novolac epoxy, resulting in cured epoxy resins with various phosphorus contents. The epoxy resins exhibited high glass‐transition temperatures (159–177 °C), good thermal stability (>320 °C), and retardation on thermal degradation rates. High char yields and high limited oxygen indices (26–32.5) were observed, indicating the resins' good flame retardance. Using a melamine‐modified phenol formaldehyde novolac to replace phenol formaldehyde novolac in the curing composition further enhanced the cured epoxy resins' glass‐transition temperatures (160–186 °C) and limited oxygen index values (28–33.5). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2329–2339, 2002  相似文献   

4.
《先进技术聚合物》2018,29(7):2147-2160
Layered double hydroxides (LDHs) are emerging as a new and green high‐efficient flame retardant. But LDHs aggregate seriously because of their hydrophilicity, which affect deeply the mechanical and flame retardant properties of their composites. For the first time in this paper, microencapsulated LDHs (MCLDHs) with melamine‐formaldehyde (MF) resin were prepared by microencapsulation technology to enhance their compatibility and dispersion within epoxy resin (EP). The mechanical and flame retardant performances of EP/MCLDH composite were studied by comparing with EP/LDH composite. Results showed that the water contact angle of MCLDHs increased from 8.9° to 122.1°, which indicated good compatibility. The particle size of MCLDHs decreased sharply, and more than one‐third were up to submicron scale, which can be conducive to dispersion. Moreover, the tensile strength and elongation at break of EP/MCLDHs with different flame retardant contents were higher than those of EP/LDHs. And the addition of MCLDHs increased the glass transition temperature (Tg) of EP/MCLDHs, which meant a strong interfacial interaction. Besides, compared with EP/LDHs, the limiting oxygen index values of EP/MCLDHs were higher, and its peak of heat release rate and total heat release decreased by 16.3% and 5.5% respectively. EP/MCLDHs achieved from V‐1 to V‐0 rate with the increasing content of MCLDHs from 20% to 30%, while LDHs/EP never passed tests. In the process of heating, H2O, CO2, and NH3 released from MCLDHs formed gaseous phase, and the remaining dense char layers and oxides produced condensed phase, which played an important role in inhibiting combustion.  相似文献   

5.
Multifunctional epoxy resins with excellent, thermal, flame‐retardant, and mechanical properties are extremely important for various applications. To solve this challenging problem, a novel highly efficient multielement flame retardant (PMSBA) is synthesized and the flame‐retardant and mechanical properties of modified epoxy resins are greatly enhanced without significantly altering their and thermal properties by applying the as‐synthesized PMSBA. The limiting oxygen index value reaches up to 29.6% and could pass the V‐0 rating in the UL‐94 test with even low P content (0.13%). Furthermore, cone calorimetry results demonstrate that 30.3% reduction in the peak heat release rate for the sample with 10.0 wt% PMSBA is achieved. X‐ray photoelectron spectroscopy and scanning electron microscopy indicate that Si‐C, Si‐N, and phosphoric acid derivative can be transformed into a multihole and intumescent char layer as an effective barrier, preserving the epoxy resin structure from fire. More importantly, mechanical properties such as impact strength, tensile strength, and flexural strength are also increased by 63.86%, 33.54%, and 15.65%, respectively, which show the incorporation of PMSBA do not deteriorate the mechanical properties of modified epoxy resins. All the results show that PMSBA is a promising strategy for epoxy resin with satisfactory, thermal, flame‐retardant, and mechanical properties.  相似文献   

6.
A novel flame‐retardant epoxy resin, (4‐diethoxyphosphoryloxyphenoxy)(4‐glycidoxyphenoxy)cyclotriphosphazene (PPCTP), was prepared by the reaction of epichlorohydrin with (4‐diethoxyphosphoryloxyphenoxy)(4‐hydroxyphenoxy)cyclotriphosphazene and was characterized by Fourier transform infrared, 31P NMR, and 1H NMR analyses. The epoxy resin was further cured with diamine curing agents, 4,4′‐diaminodiphenylmethane (DDM), 4,4′‐diaminodiphenylsulfone (DDS), dicyanodiamide (DICY), and 3,4′‐oxydianiline (ODA), to obtain the corresponding epoxy polymers. The curing reactions of the PPCTP resin with the diamines were studied by differential scanning calorimetry. The reactivities of the four curing agents toward PPCTP were in the following order: DDM > ODA > DICY > DDS. In addition, the thermal properties of the cured epoxy polymers were studied by thermogravimetric analysis, and the flame retardancies were estimated by measurement of the limiting oxygen index (LOI). Compared to a corresponding Epon 828‐based epoxy polymer, the PPCTP‐based epoxy polymers showed lower weight‐loss temperatures, higher char yields, and higher LOI values, indicating that the epoxy resin prepared could be useful as a flame retardant. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 972–981, 2000  相似文献   

7.
《先进技术聚合物》2018,29(4):1294-1302
For the sake of improving the flame retardancy of epoxy resin (EP), a novel phosphorus‐containing phenolic resin (PPR) synthesized in our group instead of conventional phenolic resin (PR) was used to cure EP in the present research. The curing processes and the corresponding crosslinking structure and mechanical performance were investigated by differential scanning calorimeter and dynamic mechanical thermal analysis. Because of the introduction of flame‐retarding elements including P and Si, PPR exhibited higher charring capacity in the condensed phase, which is helpful to construct a char layer of higher quality. Correspondingly, PPR‐cured EP displayed remarkably improved flame retardance as compared to conventional PR‐cured EP through the related evaluations including limiting oxygen index, vertical burning test, and microscale combustion colorimeter. As a multifunction agent, it is believable that PPR possesses potential commercial value to prepare flame‐retardant EP with high performance.  相似文献   

8.
Intumescent flame retardant (IFR) has received the considerable attention ascribed to the inherent advantages including non‐halogen, low toxicity, low smoke release and environmentally friendly. In this work, a novel charring agent poly (piperazine phenylaminophosphamide) named as PPTA was successfully synthesized and characterized by Fourier transform infrared spectra (FTIR) and X‐ray photoelectron spectroscopy (XPS). Then, a series of flame‐retardant EP samples were prepared by blending with ammonium polyphosphate (APP) and PPTA. Combustion tests include oxygen Index (LOI), vertical Burning Test (UL‐94) and cone calorimeter testing,these test results showed that PPTA greatly enhances the flame retardancy of EP/APP. According to detailed results, EP containing 10 wt% APP had a LOI value of 30.2%,but had no enhancement on UL‐94 rating. However, after both 7.5 wt% APP and 2.5 wt% PPTA were added, EP‐7 passed UL‐94 V‐0 rating with a LOI value of 33.0%. Moreover, the peak heat release rate (PHRR) and peak of smoke product rate (PSPR) of EP‐7 were greatly decreased. Meanwhile, the flame‐retardant mechanism of EP‐7 was investigated by scanning electron microscopy (SEM), thermogravimetric analysis/infrared spectrometry (TG‐IR) and X‐ray photoelectron spectroscopy (XPS). The corresponding results presented PPTA significantly increased the density of char layer, resulting in the good flame retardancy.  相似文献   

9.
Phosphorus‐containing epoxy‐based epoxy–silica hybrid materials with a nanostructure were obtained from bis(3‐glycidyloxy)phenylphosphine oxide, diaminodiphenylmethane, and tetraethoxysilane in the presence of the catalyst p‐toluenesulfonic acid via an in situ sol–gel process. The silica formed on a nanometer scale in the epoxy resin was characterized with Fourier transform infrared, NMR, and scanning electron microscopy. The glass‐transition temperatures of the hybrid epoxy resins increased with the silica content. The nanometer‐scale silica showed an enhancement effect of improving the flame‐retardant properties of the epoxy resins. The phosphorus–silica synergistic effect on the limited oxygen index (LOI) enhancement was also observed with a high LOI value of 44.5. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 986–996, 2001  相似文献   

10.
A new epoxy resin (Bis-ENA) containing naphthalene structure linked with a 1,4-bis(isopropylidene)phenylene was synthesized and was confirmed by elemental analysis, infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. To estimate the effect of naphthalene moiety on the cured polymer, an epoxy resin (Bis-EP) having phenyl moiety was synthesized, and curing behaviors of Bis-ENA and Bis-EP with phenol novolac were evaluated by differential scanning calorimetry. The incorporation of naphthalene structure into the resin backbone increased the curing temperature and reduced the curing reactivity. Thermal properties of the cured polymers obtained from Bis-ENA and Bis-EP with phenol novolac were examined by thermomechanical analysis and dynamic mechanical analysis. Mechanical properties and moisture resistance were evaluated by flexural strength, flexural modulus, and moisture absorption measurements. The cured polymer obtained from Bis-ENA showed higher glass transition temperature, higher flexural modulus, lower thermal expansion, and lower moisture absorption than that from Bis-EP. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3063–3069, 1999  相似文献   

11.
A novel zeolitic imidazolate framework (ZIF‐8) nanoparticles@polyphosphazene (PZN) core‐shell architecture was synthesized, and then, ZIF‐8@PZN and ammonium polyphosphate (APP) were applied for increasing the flame retardancy and mechanical property of epoxy resin (EP) through a cooperative effect. Herein, ZIF‐8 was used as the core; the shell of PZN was coated to ZIF‐8 nanoparticles via a polycondensation method. The well‐designed ZIF‐8@PZN displayed superior fire retardancy and smoke suppression effect. The synthesized ZIF‐8@PZN observably raised the flame retardancy of EP composites, which could be demonstrated by thermogravimetric analysis (TGA) and a cone calorimeter test (CCT). The chemical structure of ZIF‐8@PZN was characterized by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Compared with pure epoxy, with the incorporation of 3 wt% ZIF‐8@PZN and 18 wt% APP into the EP, along with 80.8%, 72.6%, and 64.7% decreased in the peak heat release rate (pHRR), the peak smoke production rate (pSPR), and the peak CO production rate (pCOPR), respectively. These suggested that ZIF‐8@PZN and APP generated an intumescent char layer, and ZIF‐8@PZN can strengthen the char layer, resulting in the enhancement in the flame resistance of EP.  相似文献   

12.
《先进技术聚合物》2018,29(1):603-611
A novel halogen‐free 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO)‐containing co‐curing agent, 6,6′‐(1,4‐phenylenebis(((4‐(phenylamino)phenyl)amino)methylene))bis(dibenzo[c,e][1,2]oxaphosphinine 6‐oxide) (DPN) was synthesized via a simple 1‐pot or 2‐step procedure with yield of 86.2% and 70.8%, respectively. The molecular structures of 4,4′‐((1,4‐phenylenebis(methanylylidene))bis(azanylylidene))bis(N‐phenylaniline) (DPN intermediate) and DPN are characterized by FTIR, NMR, and MS. TGA tests show that the char yield of DPN/EP composites raises to 30.9% when the molar ratio of DPN to 4,4‐diaminodiphenyl methane(DDM) is 20:80. Tg values of DPN/EP composites tested by DSC and DMA are similar to neat epoxy resin (EP), which is due to the secondary amine in DPN that participates in the cross‐linking reaction of epoxy resin. The storage modulus in the rubber stage (E′‐190 °C) of flame‐retardant epoxy resin is close to that of neat EP, while their tanδ's are lower, which indicates the similarity of samples' cross‐linking density due to the participation of DPN in the cross‐linking reaction. The results show that when the molar ratio of DPN and DDM is 5:95, the epoxy has a higher Tg value and better mechanical properties than other samples. The introduction of DPN efficiently improves the flame‐retardant properties of epoxy resin with V‐0 rating of UL‐94 vertical burning test, non‐dripping, 41% of limit oxygen index (LOI) value, low peak heat release rate (PHRR), and total heat release (THR).  相似文献   

13.
Phosphorus‐containing novolac–epoxy systems were prepared from novolac resins and isobutyl bis(glycidylpropylether) phosphine oxide (IHPOGly) as crosslinking agent. Their curing behavior was studied and the thermal, thermomechanical, and flame‐retardant properties of the cured materials were measured. The Tg and decomposition temperatures of the resulting thermosets are moderate and decrease when the phosphorous content increases. Whereas the phosphorous species decrease the thermal stability, at higher temperatures the degradation rates are lower than the degradation rate of the phosphorous‐free resin. V‐O materials were obtained when the resins were tested for ignition resistance with the UL‐94 test. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3516–3526, 2004  相似文献   

14.
A new type of epoxy resin containing 4,4′-diphenylether moiety in the backbone (2) was synthesized, and was confirmed by gel permeation chromatography, infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. In addition, in order to evaluate the influence of 4,4′-diphenylether moiety in the structure, epoxy resins having 4,4′-biphenylene moiety (4) and having 1,4-phenylene moiety (6) in place of 4,4′-diphenylether moiety were synthesized. The cured polymer obtained through the curing reaction between the new diphenylether-containing epoxy resin and phenol novolac was used for making a comparison of its thermal and physical properties with those obtained from 4, 6, and bisphenol-A (4,4′-isopropylidenediphenol) type epoxy resin. The cured polymer obtained from 2 showed markedly higher anaerobic char yield at 700°C of 44.0 wt %, higher fracture toughness, and higher mechanical strength and modulus. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3687–3693, 1999  相似文献   

15.
Based on bio‐based furfural, a phosphorus‐containing curing agent (FPD) was successfully synthesized, via the addition reaction between 9,10‐dihydro‐9‐oxa‐10 phosphaphenanthrene‐10‐oxide (DOPO) and furfural‐derived Schiff base. Then, as co‐curing agent, FPD was used to prepare flame retardant epoxy thermosets (EP) cured by 4, 4′‐diaminodiphenyl methane. The incorporated FPD improved the flame retardancy and toughness of epoxy thermoset, simultaneously. When 5 wt% FPD was added into EP, the FPD/EP achieved 35.7% limited oxygen index (LOI) value and passed UL94 V‐0 rating, meanwhile. In FPD/EP thermoset, the incorporated FPD reduced the thermal decomposition rate, increased the charring capacity, and inhibited the combustion intensity of epoxy thermoset. Through gas‐phase and condensed‐phase actions in weakening fuel supply, suppressing volatile combustion, and enhancing charring barrier effect, FPD decreased the heat release of burning epoxy thermoset, significantly. For the outstanding effectiveness on both flame retardancy and toughness, the study on FPD provides a promising way to manufacture high‐performance epoxy thermoset.  相似文献   

16.
Two novel phosphorus‐containing Mannich‐type bases, [(2‐{[(diethoxy‐phosphoryl)‐phenyl‐methyl]‐amino}‐ ethylamino)‐phenyl‐methyl]‐phosphonic acid diethyl ester (PEDA) and ({2‐[2‐(2‐{[(diethoxy‐phosphoryl)‐phenyl‐methyl]– amino}‐ethylamino)‐ethylamino]‐ethylamino}‐phenyl‐methyl)‐phosphonic acid diethyl ester (PTTA) were prepared and employed as curing agents in an attempt to prepare flame retardant epoxy systems. Through a curing reaction, phosphorus was incorporated in the backbone of the epoxy polymer. The processing characteristic of these systems was studied in terms of gel time at different temperatures. Thermal and flame retardancy properties of the cured epoxy thermosets were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and flammability test. The degradation activation energy was calculated by Kissinger's model. The results showed that the gel time of the phosphorus‐containing epoxy systems was prolonged; the glass transition temperature (Tg) was increased due to the introduction of phosphorus and the initial degradation activation energy of phosphorus‐containing epoxy systems was lower than phosphorus‐free epoxy systems. High char yield (23–27 wt%) and limiting oxygen index (LOI) values of 28–30 were observed for the phosphorus‐containing epoxy thermosets, indicating their improvement in flame retardancy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The flame‐retarded epoxy resin with improved thermal properties based on environmentally friendly flame retardants is vital for industrial application. Hereby, a novel reactive‐type halogen‐free flame retardant, 10‐(3‐(4‐hydroxy phenyl)‐3,4‐dihydro‐2H‐benzo[e] [1,3] oxazin‐4‐yl)‐5H‐phenophosphazinine 10‐oxide (DHA‐B) was synthesized via a two‐step reaction route. Its structure was characterized using 1H, 13C, and 31P NMR and HRMS spectra. For 4,4′‐diaminodipheny ethane (DDM) and diglycidyl ether of bisphenol A (DGEBA)‐cured systems, the epoxy resin with only 2 wt% loading of DHA‐B passed V‐0 rating of UL‐94 test. Significantly, its glass transition temperature (Tg) and initial decomposition temperature (T5%) were as high as 169.6°C and 359.6°C, respectively, which were even higher than those of the corresponding original epoxy resin. Besides, DHA‐B decreased the combustion intensity during combustion. The analysis of residues after combustion suggested that DHA‐B played an important role in the condensed phase.  相似文献   

18.
Phosphorus/nitrogen‐containing advanced epoxy resins were obtained by chain‐extension of the diglycidyl ether of bisphenol‐A epoxy (DGEBA) resin with phosphorus‐modified triglycidyl isocyanurate (TGICP). The structure of TGICP was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Differential scanning calorimetry revealed that the EP/TGICP composites possessed higher glass transition temperatures than that of phosphorus free EP. The thermal stability and flame retardant properties of the epoxy resin/TGICP systems were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), and vertical burning test (UL‐94) test. When the TGICP content was 10 wt%, the LOI value of epoxy resin system was as high as 35.0% and it can obtain the V‐0 grade in UL‐94 protocol. From microscale combustion calorimetry (MCC) measurement, it was found that the addition of TGICP reduced the value of peak heat release rate and total heat release. The thermal degradation process of EP and EP/TGICP composite was monitored by real time FTIR. Moreover, scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS) were used to explore the morphology and chemical components of the char residues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Fire safety and thermal dissipation performance of epoxy resins thermosets were critical for its application in key fields such as electronic devices. The simultaneous improvement of flame retardant and thermal conductivity properties were still a challenge. Herein, ammonium polyphosphate (APP) was firstly encapsulated with 5‐wt% epoxy resins based on APP and then surface grafted with polyurethane polymer chain, and the resulting APP with core‐shell‐brush structure was constructed. Finally, the multiwalled carbon nanotube (MWCNT) was assembled in the intervals of polymer brush on APP surface, and the prepared filler was defined as MF‐APP. Its chemical structure and morphologies were characterized and confirmed. The wettability of MF‐APP was evaluated by water contact angles tests (WCA) and MF‐APP exhibited hydrophobic property with the WCA of 138°. When 9‐wt% MF‐APP was incorporated into EP thermosets, the thermal conductive value of EP/MF‐APP achieved 1.02 Wm?1 K?1, and the MWCNTs concentration was only 1.8 wt% in thermosets. Compared with the previous work, the prepared EP/MF‐APP thermosets exhibited outstanding thermal conductive efficiency because of the homogeneously distribution of MWCNTs. Moreover, the samples fulfilled UL‐94 V‐0 grade during vertical burning tests with the limiting oxygen index of 30.8%. As a result, the thermal conductivity and flame retardancy of EP thermosets were simultaneously enhanced with a relatively low addition amount of MF‐APP, which would bring more chance for wider application of EP thermosets in key fields.  相似文献   

20.
《先进技术聚合物》2018,29(6):1733-1743
A novel hybrid material of ZIF‐8/RGO (zeolitic imidazolate frameworks‐8 loaded the surface of graphene) was synthesised by a simple method and characterized. Then, ZIF‐8/RGO was added into epoxy resin (EP), and the flame retardancy and smoke suppression of the EP composites were studied. Compared with pure EP, the peak heat release rate and the total heat release of the EP composites were reduced remarkably, and their LOI and UL94 vertical burning rating were also improved. In addition, their smoke production rate and total smoke production were decreased drastically. The improved flame retardancy and smoke suppression were mainly attributed to the physical barrier effect of graphene. Meanwhile, the metal oxide decomposed from ZIF‐8 could contribute to the production of char residue and enhance the compactness of the char layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号