首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Cellular senescence, a stress‐induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age‐related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neurons, which accordingly is a process distinct by definition from senescence. It is nevertheless possible that proteostasis failure and cellular senescence have overlapping molecular mechanisms. Here, we identify postmitotic cellular senescence as an adaptive stress response to proteostasis failure. Primary rat hippocampal neurons in long‐term cultures show molecular changes indicative of both senescence (senescence‐associated β‐galactosidase, p16, and loss of lamin B1) and proteostasis failure relevant to Alzheimer's disease. In addition, we demonstrate that the senescent neurons exhibit resistance to stress. Importantly, treatment of the cultures with an mTOR antagonist, protein synthesis inhibitor, or chemical compound that reduces the amount of protein aggregates relieved the proteotoxic stresses as well as the appearance of senescence markers. Our data propose mechanistic insights into the pathophysiological brain aging by establishing senescence as a primary cell‐autonomous neuroprotective response.  相似文献   

2.
The purpose of this study was to evaluate the level of mitotic cyclin B1 in the context of senescence and cell death in A549 non-small cell lung carcinoma cells. This was performed through analysis of the cell cycle, the percentage of SA-β-galactosidase-positive, as well as TUNEL-positive cells. Morphological alterations were studied using a transmission electron microscope. Changes in the intracellular level and the presence of cyclin B1 in the nucleus and cytoplasm areas were detected by flow cytometry and confocal fluorescence microscopy, respectively. In the cells exposed to various concentrations of doxorubicin, different kinds of cell death and senescent phenotype were observed. Alterations in the cell cycle and increased polyploidy may be indicative of mitotic catastrophe execution. Changes in cyclin B1 may also be strictly related to its different regulation at mitotic catastrophe and senescence programs.  相似文献   

3.
Summary Previously, it was found that senescent cells can undergo a modified cell cycle with mitotic cells as the end results. The major cycling events started with polyploidization, followed by depolyploidization to multinucleated cells (MNCs). These latter cells produced mononuclear offspring cells that could express mitotic cell divisions. In this report the emphasis is on late senescent fibroblasts that exhibited the senescence-associated change in cell morphology to large flat cells. Prior to live cell photography, flat cell cultures were maintained for months in the same culture flasks and therefore judged to be in a late senescent phase. All of the cellular events outlined above were present in these old cell cultures. Time lapse pictures showed movements of mitotic daughter cells away from each other and alignment of the chromosomes on the metaphase plate was visible in other mitotic cells. These data challenge the common view that cell senescence is irreversible and, therefore, an antitumor mechanism. A new finding was that the spike in polyploid cells in the near senescent phase consisted of cells with pairs of sister chromosomes from endoreduplication of DNA (two rounds of DNA synthesis and no mitosis). The lack of cells with 92 single chromosomes (e.g., G2 tetraploid cells) suggested that these polyploid cells also went through a changed cell cycle. The question now is whether these atypical polyploid cells are a subpopulation in senescence that can undergo the cycling from polyploidy to genome-reduced mitotic cells.  相似文献   

4.
Cellular senescence is recognized as a potent anticancer mechanism that inhibits carcinogenesis. Cancer cells can also undergo senescence upon chemo- or radiotherapy. Curcumin, a natural polyphenol derived from the rhizome of Curcuma longa, shows anticancer properties both in vitro and in vivo. Previously, we have shown that treatment with curcumin leads to senescence of human cancer cells. Now we identified the molecular mechanism underlying this phenomenon. We observed a time-dependent accumulation of mitotic cells upon curcumin treatment. The time-lapse analysis proved that those cells progressed through mitosis for a significantly longer period of time. A fraction of cells managed to divide or undergo mitotic slippage and then enter the next phase of the cell cycle. Cells arrested in mitosis had an improperly formed mitotic spindle and were positive for γH2AX, which shows that they acquired DNA damage during prolonged mitosis. Moreover, the DNA damage response pathway was activated upon curcumin treatment and the components of this pathway remained upregulated while cells were undergoing senescence. Inhibition of the DNA damage response decreased the number of senescent cells. Thus, our studies revealed that the induction of cell senescence upon curcumin treatment resulted from aberrant progression through the cell cycle. Moreover, the DNA damage acquired by cancer cells, due to mitotic disturbances, activates an important molecular mechanism that determines the potential anticancer activity of curcumin.  相似文献   

5.

Cancer cell death is the utmost aim in cancer therapy. Anti-cancer agents can induce apoptosis, mitotic catastrophe, senescence, or autophagy through the production of free radicals and induction of DNA damage. However, cancer cells can acquire some new properties to adapt to anti-cancer agents. An increase in the incidence of apoptosis, mitotic catastrophe, senescence, and necrosis is in favor of overcoming tumor resistance to therapy. Although an increase in the autophagy process may help the survival of cancer cells, some studies indicated that stimulation of autophagy cell death may be useful for cancer therapy. Using some low toxic agents to amplify cancer cell death is interesting for the eradication of clonogenic cancer cells. Resveratrol (a polyphenol agent) may affect various signaling pathways related to cell death. It can induce death signals and also downregulate the expression of anti-apoptotic genes. Resveratrol has also been shown to modulate autophagy and induce mitotic catastrophe and senescence in some cancer cells. This review focuses on the important targets and mechanisms for the modulation of cancer cell death by resveratrol.

  相似文献   

6.
Endothelial cell senescence likely plays a key role in age-associated vascular diseases. A close relationship between in vitro and in vivo senescence of endothelial cells has been established. Therefore, elucidating the structural and functional changes occurring during long-term cultures of endothelial cells would contribute to clarifying the pathogenesis of vascular disorders in the elderly. We investigated the effects of replicative senescence on the architecture of bovine aortic vs microvascular endothelial cells. A marked increase in cell area was observed in both cell types, whereas dramatic morphological alterations were detected in microvascular endothelial cells only. The latter also showed age-associated reorganization of the actin cytoskeleton. Finally, both aortic and microvascular endothelial cells lost their migratory response to basic fibroblast growth factor with age. Our results highlight dramatic structural and functional alterations in senescent endothelial cells. Such rearrangements might account for in vivo endothelial cell alterations involved in age-associated vascular dysfunction.  相似文献   

7.
Tetraploidy can arise from various mitotic or cleavage defects in mammalian cells, and inheritance of multiple centrosomes induces aneuploidy when tetraploid cells continue to cycle. Arrest of the tetraploid cell cycle is therefore potentially a critical cellular control. We report here that primary rat embryo fibroblasts (REF52) and human foreskin fibroblasts become senescent in tetraploid G1 after drug- or small interfering RNA (siRNA)-induced failure of cell cleavage. In contrast, T-antigen–transformed REF52 and p53+/+ HCT116 tumor cells rapidly become aneuploid by continuing to cycle after cleavage failure. Tetraploid primary cells quickly become quiescent, as determined by loss of the Ki-67 proliferation marker and of the fluorescent ubiquitination-based cell cycle indicator/late cell cycle marker geminin. Arrest is not due to DNA damage, as the γ-H2AX DNA damage marker remains at control levels after tetraploidy induction. Arrested tetraploid cells finally become senescent, as determined by SA-β-galactosidase activity. Tetraploid arrest is dependent on p16INK4a expression, as siRNA suppression of p16INK4a bypasses tetraploid arrest, permitting primary cells to become aneuploid. We conclude that tetraploid primary cells can become senescent without DNA damage and that induction of senescence is critical to tetraploidy arrest.  相似文献   

8.
Aging is an inherently stochastic process, and its hallmark is heterogeneity between organisms, cell types, and clonal populations, even in identical environments. The replicative lifespan of primary human cells is telomere dependent; however, its heterogeneity is not understood. We show that mitochondrial superoxide production increases with replicative age in human fibroblasts despite an adaptive UCP-2–dependent mitochondrial uncoupling. This mitochondrial dysfunction is accompanied by compromised [Ca2+]i homeostasis and other indicators of a retrograde response in senescent cells. Replicative senescence of human fibroblasts is delayed by mild mitochondrial uncoupling. Uncoupling reduces mitochondrial superoxide generation, slows down telomere shortening, and delays formation of telomeric γ-H2A.X foci. This indicates mitochondrial production of reactive oxygen species (ROS) as one of the causes of replicative senescence. By sorting early senescent (SES) cells from young proliferating fibroblast cultures, we show that SES cells have higher ROS levels, dysfunctional mitochondria, shorter telomeres, and telomeric γ-H2A.X foci. We propose that mitochondrial ROS is a major determinant of telomere-dependent senescence at the single-cell level that is responsible for cell-to-cell variation in replicative lifespan.  相似文献   

9.
Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser15 and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser15 phosphorylation is associated with enhanced phosphorylation at Ser46, increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype.  相似文献   

10.
It is widely believed that cellular senescence is a tumor suppressor mechanism; however, it has not been understood why it is advantageous for organisms to retain mutant cells is a postmitotic state rather than simply eliminating them by apoptosis. It has recently been proposed that the primary role of cellular senescence is in mitotic compartments of fixed size in which spatial considerations dictate that a deleted cell is replaced by a neighboring cell. In these situations, rather than eliminating the neoplastic clone, deletion of mutant cells can paradoxically lead to their increased turnover. If mutant cells become senescent, then the compartment is instead progressively filled by senescent cells until the mutant clone is eliminated. Since most of the genetic alterations responsible for malignancy arise in stem cells, this mechanism may have particular relevance to the stem cell niche. In this article the implications of this hypothesis are examined in detail and related to experimental results. It is further proposed here that blockage of stem cell niches by senescent stem cells may account for some of the functional alterations observed in stem cell compartments at old age. Clearly, the existence of senescent stem cells is central to the proposed hypothesis, and although there is preliminary evidence for this assertion it has yet to be proven in vivo. An experimental strategy involving double labeling of stem cells with a nucleotide label is described that can address this question.  相似文献   

11.
Anti-integrin-linked kinase (ILK) therapies result in aberrant mitosis including altered mitotic spindle organization, centrosome declustering and mitotic arrest. In contrast to cells that expressed the retinoblastoma tumor suppressor protein Rb, we have shown that in retinoblastoma cell lines that do not express Rb, anti-ILK therapies induced aberrant mitosis that led to the accumulation of temporarily viable multinucleated cells. The present work was undertaken to: 1) determine the ultimate fate of cells that had survived anti-ILK therapies and 2) determine whether or not Rb expression altered the outcome of these cells. Our data indicate that ILK, a chemotherapy drug target is expressed in both well-differentiated, Rb-negative and relatively undifferentiated, Rb-positive retinoblastoma tissue. We show that small molecule targeting of ILK in Rb-positive and Rb-deficient cancer cells results in increased centrosomal declustering, aberrant mitotic spindle formation and multinucleation. However, anti-ILK therapies in vitro have different outcomes in retinoblastoma and glioblastoma cell lines that depend on Rb expression. TUNEL labeling and propidium iodide FACS analysis indicate that Rb-positive cells exposed to anti-ILK therapies are more susceptible to apoptosis and senescence than their Rb-deficient counterparts wherein aberrant mitosis induced by anti-ILK therapies exhibit mitotic arrest instead. These studies are the first to show a role for ILK in chemotherapy-induced senescence in Rb-positive cancer lines. Taken together these results indicate that the oncosuppressive outcomes for anti-ILK therapies in vitro, depend on the expression of the tumor suppressor Rb, a known G1 checkpoint and senescence regulator.  相似文献   

12.
The hepatocyte growth factor (HGF)/Met signalling pathway is up‐regulated in many cancers, with downstream mediators playing a role in DNA double strand break repair. Previous studies have shown increased radiosensitization of tumours through modulation of Met signalling by genetic methods. We investigated the effects of the anti‐HGF monoclonal antibody, AMG102, on the response to ionizing radiation in a model of glioblastoma multiforme in vitro and in vivo. Radiosensitivity was evaluated in vitro in the U‐87 MG human glioma cell line. Met activation was measured by Western blot, and the effect on survival following radiation was evaluated by clonogenic assay. Mechanism of cell death was evaluated by apoptosis and mitotic catastrophe assays. DNA damage was quantitated by γH2AX foci and neutral comet assay. Growth kinetics of subcutaneous tumours was used to assess the effects of AMG102 on in vivo tumour radiosensitivity. AMG102 inhibited Met activation after irradiation. An enhancement of radiation cell killing was shown with no toxicity using drug alone. Retention of γH2AX foci at 6 and 24 hrs following the drug/radiation combination indicated an inhibition of DNA repair following radiation, and comet assay confirmed DNA damage persisting over the same duration. At 48 and 72 hrs following radiation, a significant increase of cells undergoing mitotic catastrophe was seen in the drug/radiation treated cells. Growth of subcutaneous tumours was slowed in combination treated mice, with an effect that was greater than additive for each modality individually. Modulation of Met signalling with AMG102 may prove a novel radiation sensitizing strategy. Our data indicate that DNA repair processes downstream of Met are impaired leading to increased cell death through mitotic catastrophe.  相似文献   

13.
14.
We have previously reported that G-actin accumulation in nuclei is a universal phenomenon of cellular senescence. By employing primary culture of human diploid fibroblast (HDF) and stress-induced premature senescence (SIPS), we explored whether the failure of actin export to cytoplasm is responsible for actin accumulation in nuclei of senescent cells. Expression of exportin 6 (Exp6) and small G-protein, Ran, was significantly reduced in the replicative senescence, but not yet in SIPS, whereas nuclear import of actin by cofilin was already increased in SIPS. After treatment of young HDF cells with H2O2, rapid reduction of nuclear RanGTP was observed along with cytoplasmic increase of RanGDP. Furthermore, significantly reduced interaction of Exp6 with RanGTP was found by GST-Exp6 pull-down analysis. Failure of RanGTP restoration was accompanied with inhibition of ATP synthesis and NTF2 sequestration in the nuclei along with accordant change of senescence morphology. Indeed, knockdown of Exp6 expression significantly increased actin molecule in the nuclei of young HDF cells. Therefore, actin accumulation in nuclei of senescent cells is most likely due to the failure of RanGTP restoration with ATP deficiency and NTF2 accumulation in nuclei, which result in the decrease of actin export via Exp6 inactivation, in addition to actin import by cofilin activation.  相似文献   

15.
In senescent fibroblast cell cultures which have approached a postmitotic stage in vitro, responsiveness to growth factors is restored upon exposure to an embryonic sheep cell extract. The extract contains molecules below a molecular weight of 1 x 10(5) Da in aqueous solution. Following a transient exposure to the extract, mitotic activity is resumed, and the cells keep dividing over several passages. The target cells which respond to the treatment were identified in a single-cell assay as those that still had the capacity to undergo at least several mitotic divisions before entering the final stage of senescence.  相似文献   

16.
Mitotic catastrophe is an oncosuppressive mechanism that senses mitotic failure leading to cell death or senescence. As such, it protects against aneuploidy and genetic instability, and its induction in cancer cells by exogenous agents is currently seen as a promising therapeutic end point. Apoptin, a small protein from Chicken Anemia Virus (CAV), is known for its ability to selectively induce cell death in human tumor cells. Here, we show that apoptin triggers p53-independent abnormal spindle formation in osteosarcoma cells. Approximately 50% of apoptin-positive cells displayed non-bipolar spindles, a 10-fold increase as compared to control cells. Besides, tumor cells expressing apoptin are greatly limited in their progress through anaphase and telophase, and a significant drop in mitotic cells past the meta-to-anaphase transition is observed. Time-lapse microscopy showed that mitotic osteosarcoma cells expressing apoptin displayed aberrant mitotic figures and/or had a prolonged cycling time during mitosis. Importantly, all dividing cells expressing apoptin eventually underwent cell death either during mitosis or during the following interphase. We infer that apoptin can efficiently trigger cell death in dividing human tumor cells through induction of mitotic catastrophe. However, the killing activity of apoptin is not only confined to dividing cells, as the CAV-derived protein is also able to trigger caspase-3 activation and apoptosis in non-mitotic cancer cells.  相似文献   

17.
《Autophagy》2013,9(3):249-250
Current studies to define the mechanism by which vitamin D3 and analogs of vitamin D3 enhance the response to ionizing radiation in breast tumor cells suggest that these effects are mediated, in large part, through the promotion of autophagic cell death. The residual surviving cell population remains in a senescent, growth arrested state, with minimal recovery of proliferative capacity. It is becoming evident that pathways other than or in addition to apoptosis, including senescence arrest, mitotic catastrophe and autophagy, contribute to loss of self-renewal capacity in tumor cells exposed to chemotherapeutic drugs and ionizing radiation. How and why the cell chooses a particular growth arrest and/or cell death pathway remains a puzzle to be solved.

Addendum to:

Potentiation of Radiation Sensitivity in Breast Tumor Cells by the Vitamin D3 Analog, EB 1089 through Promotion of Autophagy and Interference with Proliferative Recovery

G. DeMasters, X. Di, R. Shiu, I. Newsham and D.A. Gewirtz

Mol Cancer Ther 2006; 5:2786-97  相似文献   

18.
Therapy-induced cellular senescence describes the phenomenon of cell cycle arrest that can be invoked in cancer cells in response to chemotherapy. Sustained proliferative arrest is often overcome as a contingent of senescent tumor cells can bypass this cell cycle restriction. The mechanism regulating cell cycle re-entry of senescent cancer cells remains poorly understood. This is the first report of the isolation and characterization of two distinct transitional states in chemotherapy-induced senescent cells that share indistinguishable morphological senescence phenotypes and are functionally classified by their ability to escape cell cycle arrest. It has been observed that cell surface expression of coxsackie and adenovirus receptor (CAR) is downregulated in cancer cells treated with chemotherapy. We show the novel use of surface CAR expression and adenoviral transduction to differentiate senescent states and also show in vivo evidence of CAR downregulation in colorectal cancer patients treated with neoadjuvant chemoradiation. This study suggests that CAR is a candidate biomarker for senescence response to antitumor therapy, and CAR expression can be used to distinguish transitional states in early senescence to study fundamental regulatory events in therapy-induced senescence.  相似文献   

19.
Exposure of MDA-MB-231 and MCF-7/VP human breast carcinoma cells to theanthracyclines doxorubicin and WP631 induced polyploidy, formation of multinucleated cellsand cell death by mitotic catastrophe through caspase-dependent and caspase-independentmechanisms. In both cell lines, the antiproliferative effect of WP631 was higher than that ofdoxorubicin and a transient halt in G2/M was observed without cell senescence, while p53-dependent apoptosis did not occur in these cells. Mitotic catastrophe was linked to necrosis, butalso to apoptosis-like death, estimated by differential cell staining with Annexin-V-fluoresceinand propidium iodide. Drug-induced changes in the expression of c-myc and p21WAF1, and in theirrespective protein levels, were observed. They depended on the cell line, the anthracycline usedand its concentration, and they were consistent with the cell cycle progression through G2 tomitosis. Significant activation of caspase-2 and caspase-3 was only observed in MDA-MB-231cells treated with doxorubicin but not with WP631, indicating that caspases may be notmandatory for the occurrence of cell death through mitotic catastrophe. In MCF-7/VP cells,which do not express functional caspase-3, mitotic catastrophe was also induced.  相似文献   

20.

Purpose

Senescence is a terminal growth arrest that functions as a tumor suppressor in aging and precancerous cells and is a response to selected anticancer compounds. Lysosomal-β-galactosidase (GLB1) hydrolyzes β-galactose from glycoconjugates and is the origin of senescence-associated β-gal activity (SA-β-gal). Using a new GLB1 antibody, senescence biology was investigated in prostate cancer (PCa) tissues.

Experimental Design

In vitro characterization of GLB1 was determined in primary prostate epithelial cell cultures passaged to replicative senescence and in therapy-induced senescence in PCa lines using chemotherapeutic agents. FFPE tissue microarrays were subjected to immunofluorescent staining for GLB1, Ki67 and HP1γ and automated quantitative imaging initially using AQUA in exploratory samples and Vectra in a validation series.

Results

GLB1 expression accumulates in replicative and induced senescence and correlates with senescent morphology and P16 (CDKN2) expression. In tissue arrays, quantitative imaging detects increased GLB1 expression in high-grade prostatic intraepithelial neoplasia (HGPIN), known to contain senescent cells, and cancer compared to benign prostate tissues (p<0.01) and senescent cells contain low Ki67 and elevated HP1γ. Within primary tumors, elevated GLB1 associates with lower T stage (p=0.01), localized versus metastatic disease (p=0.0003) and improved PSA-free survival (p=0.03). Increased GLB1 stratifies better PSA-free survival in intermediate grade PCa (0.01). Tissues that elaborate higher GLB1 display increased uniformity of expression.

Conclusion

Increased GLB1 is a valuable marker in formalin-fixed paraffin-embedded (FFPE) tissues for the senescence-like phenotype and associates with improved cancer outcomes. This protein addresses a lack of senescence markers and should be applicable to study the biologic role of senescence in other cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号