首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用发酵产物中的二氧化碳(CO2)和氢气(H2)作为循环气提气源,对丙酮丁醇梭菌(Clostridium acetobutylicum CGMCC 5234)发酵产物进行原位气提,实现丙酮、丁醇和乙醇混合物(ABE)的连续纤维床固定化发酵生产。连续发酵实验进行了12批次共309 h,总溶剂ABE当量浓度为133.3 g·L-1(其中丁醇 83.5 g·L-1,丙酮38.4 g·L-1,乙醇11.4 g·L-1),葡萄糖消耗率为1.29 g·(L·h) -1,总溶剂ABE产率为0.431 g·(L·h) -1,转化率为0.333 g·g-1,其中丁醇产率为0.270 g·(L·h) -1,转化率为 0.209 g·g-1,发酵液中丁醇浓度控制在8~12 g·L-1,显著优于游离发酵的结果。气提提取之后冷凝的ABE溶液出现分层现象,其中丁醇相丁醇浓度高达603.7 g·L-1,极大地减缓后续分离提纯的负担。结果表明,自产气循环气提与纤维床固定化耦合连续发酵生产ABE(特别是丁醇)的工艺具有可行性和竞争力。  相似文献   

2.
Butanol production from renewable resources has been increasingly investigated over the past decade, mostly for its use as a liquid biofuel for road transportation, since its energy density is higher than that of ethanol and it may be used in gasoline driven engines with practically no changes, but also for use as a feedstock in the chemical industry. Most of the research concerning butanol production focuses on the ABE process (fermentation of sugars into a mixture of acetone, butanol and ethanol), which has several drawbacks regarding microorganism performance and product inhibition. An alternative to ABE fermentation, ethanol catalytic conversion to butanol can produce a higher quality product with less retrofitting than ABE in existing ethanol producing facilities. There are different types of catalysts for the chemical conversion of ethanol to butanol being developed in laboratory scale, but their actual use in a sugarcane processing plant has never before been assessed. Butanol production from ethanol in a sugarcane biorefinery, using data from the literature, was assessed in this study; different technological alternatives (catalytic routes) were evaluated through computer simulation in Aspen Plus (including production of electricity, sugar, ethanol and other products) and economic and environmental impacts were assessed. Results indicate that vapor-phase catalysis presents higher potential for industrial implementation, and commercialization of butanol for use as a chemical feedstock has an economic performance similar to that of current, optimized first generation sugarcane distilleries, but can potentially contribute to cost reduction that will allow commercialization of butanol as a fuel in the future.  相似文献   

3.
BACKGROUND: To use butanol as a liquid fuel and feedstock, it is necessary to establish processes for refining low‐concentration butanol solutions. Pervaporation (PV) employing hydrophobic silicalite membranes for selective recovery of butanol is a promising approach. In this study, the adsorption behavior of components present in clostridia fermentation broths on membrane material (silicalite powder) was investigated. The potential of PV using silicone rubber‐coated silicalite membranes for the selective separation of butanol from model acetone–butanol–ethanol (ABE) solutions was investigated. RESULTS: The equilibrium adsorbed amounts of ABE per gram of silicalite from aqueous solutions of binary mixtures at 30 °C increased as follows: ethanol (95 mg) < acetone (100 mg) < n‐butanol (120 mg). The amount of butanol adsorbed is decreased by the adsorption of acetone and butyric acid. In the separation of ternary butanol/water/acetone mixtures, the enrichment factor for acetone decreased, compared with that in binary acetone/water mixtures. In the separation of a model acetone–butanol–ethanol (ABE) fermentation broth containing butyric acid by PV using a silicone rubber‐coated silicalite membrane, the permeate butanol concentration was comparable with that obtained in the separation of a model ABE broth without butyric acid. The total flux decreased with decreasing feed solution pH. CONCLUSION: A silicone rubber‐coated silicalite membrane exhibited highly selective PV performance in the separation of a model ABE solution. It is very important to demonstrate the effectiveness of PV in the separation of actual clostridia fermentation broths, and to identify the factors affecting PV performance. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
The demand for the large-scale biofuels production is very high. The use of ethanol and butanol in flex-fuel vehicles have already been achieved, but still need improvement to decrease the gasoline-dependence. In addition to it, the preparation of ethanol and butanol by eco-friendly routes are still a challenge. The use of ABE route, in which acetone, butanol, and ethanol are prepared by fermentation of 5 or 6 carbon sugars, requires higher yields and better separation performance. The goal of this work was to evaluate the use of pervaporation through asymmetric activated carbon (AC) dispersed polymethylsiloxane membranes for the separation of ABE aqueous solution with 1 wt% total organics. The amount of the filler was varied from 0 to 3 wt%. Membranes were characterized by scanning electronic microscopy, Fourier transformed infrared spectroscopy, swelling in solvents, thermogravimetric analysis, and differential scanning calorimetry. Membrane with 1 wt% of AC membrane showed different behaviors both in thermal resistance, which was increased, and also in pervaporation separation index (PSI). In this condition, membrane total flux, separation factor, and PSI for ethanol were 13.2, 2.6, and 19.9 g m−2 h−1, so that sorption behavior and diffusion rates were changed. Thus, it was possible to modulate membrane properties.  相似文献   

5.
Pervaporation (PV) has attracted increasing attention because of its potential application in bio-butanol recovery from fermentation process. In this work, PDMS/ceramic composite membrane was employed for PV separation of acetone–butanol–ethanol (ABE) aqueous solutions. The influence of coupling effect on the molecular transport during the PV process was systematically investigated. The separation performance and transport phenomena of ABE molecules were discussed based on the analysis and calculation of physicochemical properties such as solubility parameter, polarity parameter, interaction parameter, activity coefficient. The results suggested that the ABE separation factor was mainly determined by the intrinsic solubility parameter and driving force. Coupling effect in the ABE multicomponent system was closely related to the interaction parameters between components themselves and between component and membrane. Also, the PDMS membrane was integrated with ABE fermentation to construct an efficient intensification process. It was found that the rate matching of fermentation and in situ removal could improve the ABE productivity by 2 times.  相似文献   

6.
渗透汽化法从丙酮-丁醇-乙醇中分离浓缩丁醇   总被引:1,自引:0,他引:1  
发酵法生产丁醇的产物质量浓度很低,为了实现丁醇的高效分离浓缩,文中采用渗透汽化膜分离技术对模型发酵液(丙酮、丁醇、乙醇混合溶液,ABE)进行浓缩实验。结果表明:随着温度、真空度、错流速度、料液质量浓度的增大,丁醇通量上升;渗透汽化膜对丁醇选择性在温度50℃时最佳,并随真空度的减小而减小,随料液质量浓度的增大而降低。实验证明,渗透汽化法能实现丁醇的高效分离浓缩,并且利用串联阻力溶解扩散模型可较好地预测ABE溶液体系中各组分的传质和分离效果。  相似文献   

7.
The second generation biofuel butanol can be produced by acetone‐butanol‐ethanol (ABE) fermentation, but the separation from the broth is still challenging. Therefore, dipotassium hydrogen phosphate was investigated as salting‐out agent. The ABE fermentation broth was enriched by a prefractionator after being preheated. The enriched ABE solution was salted out by K2HPO4 solutions at different temperatures. The water in the supplemented ABE solution was largely removed by the salting‐out method. The energy requirements for the prefractionator and the butanol column were significantly reduced. The total energy demand for the recovery of acetone, butanol, and ethanol by salting‐out and subsequent distillation was optimized. With the salting‐out process, the entire salting‐out and distillation method turned out to be more energy‐saving than the conventional one.  相似文献   

8.
生物法生产的乙醇、丙酮和丁醇是制药行业重要的溶剂之一,也是可替代生物能源之一。文章对生物发酵法生产乙醇、丙酮和丁醇技术进行了概括,并对其发展的前景进行了展望。  相似文献   

9.
《分离科学与技术》2012,47(9-10):2460-2472
Abstract

With the continual rise in the cost of fossil fuel based energy, research into economic and sustainable alternatives is of increasing importance. One significant source of increased cost and demand is the consumption of fossil fuels for automotive fuels. While ethanol has received the most attention as a fuel additive; butanol could be a better direct fuel alternative owing to its physical properties and energy value when compared to ethanol. Commercial butanol is nearly exclusively produced from petroleum feedstocks currently; however, some recent interest has begun to refocus on its generation via fermentation. Unfortunately, this production is limited due to the nature of the process and the use of energy-intensive separation techniques. Ionic liquids are novel green solvents that have the potential to be employed as an extraction agent to remove butanol from the aqueous fermentation media. A hurdle to this potential is the limited availability of solubility data for ionic liquids. This research investigates the phase behavior of two ionic liquids, butanol, and water. Additionally, issues related to the implementation of the investigated ionic liquids are discussed.  相似文献   

10.
陈强  董晋军  许国超  韩瑞枝  倪晔 《化工进展》2015,34(12):4214-4219
糖丁基梭菌Clostridium saccharobutylicum DSM 13864能利用多种糖类为底物发酵产丁醇。本文研究了该菌体细胞表面的理化特性,并以砖块作为细胞固定化材料进行丁醇发酵。采用细菌吸附有机溶剂(MATS)法证明糖丁基梭菌细胞表面有强烈的亲水性,并且等电点在pH值为3左右,这些特性有利于菌体与表面亲水多孔的砖块吸附。在60g/L葡萄糖发酵培养基中,以5~8目砖块作为固定化材料,流速为1.1L/min,发酵48h后,丁醇的浓度、得率和生产率分别达到11.02g/L、0.18g/g和0.23g/(L·h),相比悬浮细胞发酵分别提高了10.53%、5.88%和9.52%。结果表明:砖块作为一种固定化材料可有效提高糖丁基梭菌的发酵产丁醇水平。  相似文献   

11.
Pervaporation has attracted considerable interest owing to its potential application in recovering biobutanol from biomass acetone-butanol-ethanol (ABE) fermentation broth. In this study, butanol was recovered from its aqueous solution using a polydimethylsiloxane (PDMS)/ceramic composite pervaporation membrane. The effects of operating temperature, feed concentration, feed flow rate and operating time on the membrane pervaporation per-formance were investigated. It was found that with the increase of temperature or butanol concentration in the feed, the total flux through the membrane increased while the separation factor decreased slightly. As the feed flow rate increased, the total flux increased gradually while the separation factor changed little. At 40 &#61616;C and 1% (by mass) butanol in the feed, the total flux and separation factor of the membrane reached 457.4 g&#8226;m&#61485;2&#8226;h&#61485;1 and 26.1, respec-tively. The membrane with high flux is suitable for recovering butanol from ABE fermentation broth.  相似文献   

12.
Mixed matrix membranes (MMMs) comprising polyamide-imide (PAI) and α-, β- or γ-cyclodextrin (CD) have been investigated experimentally and computationally for isomeric n-butanol/tert-butanol (n-BuOH/t-BuOH) separation via pervaporation. Consistent with molecular simulation, experimental results show that the CD inclusion ability and butanol discrimination ability are dependent on both CD cavity size and butanol molecular size. The PAI membrane incorporated with α-CD has the smallest cavity and has the highest discrimination ability for the n-BuOH/t-BuOH pair but with a low butanol flux. The mixed matrix membrane embedded with γ-CD has the lowest selectivity and the highest flux. The PAI/β-CD membrane has a comparable selectivity and flux, and exhibits preferential sorption and diffusion selectivity toward n-BuOH. A maximum separation factor of 1.53 with a corresponding flux of 4.4 g/m2 h are obtained at an optimal β-CD loading of 15 wt%. Further increments in the CD content eventually lead to a decrease in separation performance because of CD agglomeration and severe phase separation. To better understand the influence of CD on the separation performance of mixed matrix membranes, SEM, FTIR and XRD have been employed for membrane characterizations. The effect of n-butanol/t-butanol ratio in the feed composition has also been studied. It is found that both flux and separation factor decrease with increasing n-butanol content in the feed. The decline is attributed to the change in total vapor pressure at the upstream and the mutual drag effect of isomeric butanol molecules.  相似文献   

13.
CO, H2, and CO2 are major components of syngas and some industrial CO‐rich waste gases (e.g. waste gases from steel industries), besides some additional minor compounds. It was recently shown that those gases can be bioconverted, by acetogenic/solventogenic bacteria, into ethanol and higher alcohols such as butanol, but also hexanol, through the so‐called HBE fermentation. That process presents some advantages over existing chemical conversion processes. This paper reviews HBE fermentation from C1‐gases after briefly describing the more conventional ABE (acetone‐butanol‐ethanol) fermentation from carbohydrates by Clostridium acetobutylicum, in order to allow for comparison of both processes. Although acetone may appear in carbohydrate fermentation, alcohols are the only major end‐metabolites in the HBE process with Clostridium carboxidivorans. The few acetogenic bacteria known to metabolize C1‐gases and produce butanol or higher alcohols are described. Clostridium carboxidivorans has been used in most cases. Bioconversion of the gaseous substrates takes place in two stages, namely acidogenesis (production of acids) followed by solventogenesis (production of alcohols), characterized by different optimal fermentation conditions. Major parameters affecting each bioconversion stage as well as the overall fermentation process are analyzed. Although it has been claimed that acidification is required in ABE fermentation to initiate the solventogenic stage, strong acidification seems to some extent not to be a prerequisite for solventogenesis in the HBE process. Bioreactors potentially suitable for this type of bioconversion process are described as well. © 2017 Society of Chemical Industry  相似文献   

14.
Production of second generation ethanol and other added value chemicals from sugarcane bagasse and straw integrated to first generation sugarcane biorefineries presents large potential for industrial implementation, since part of the infrastructure where first generation ethanol is produced may be shared between both plants. In this context, butanol from renewable resources has attracted increasing interest, mostly for its use as a drop in liquid biofuel for transportation, since its energy density is greater than that of ethanol, but also for its use as feedstock in the chemical industry. In this paper, vapor-phase catalytic production of butanol from first and second generation ethanol in a sugarcane biorefinery was assessed, using data available from the literature. The objective is to evaluate the potential of butanol either as fuel or feedstock for industry, taking into account economical/environmental issues through computer simulation. The results obtained show that, although promising, butanol sold as chemical has a limited market and as fuel presents economic constraints. In addition, investments on the butanol conversion plant could be an obstacle to its practical implementation. Nevertheless, environmental assessment pointed out advantages of its use as fuel for road transportation, if compared with gasoline in terms of global environmental impacts such as global warming.  相似文献   

15.
BACKGROUND: Butanol fermentation is product limiting owing to butanol toxicity to microbial cells. Butanol (boiling point: 118 °C) boils at a higher temperature than water (boiling point: 100 °C) and application of vacuum technology to integrated acetone–butanol–ethanol (ABE) fermentation and recovery may have been ignored because of direct comparison of boiling points of water and butanol. This research investigated simultaneous ABE fermentation using Clostridium beijerinckii 8052 and in situ butanol recovery by vacuum. To facilitate ABE mass transfer and recovery at fermentation temperature, batch fermentation was conducted in triplicate at 35 °C in a 14 L bioreactor connected in series with a condensation system and vacuum pump. RESULTS: Concentration of ABE in the recovered stream was greater than that in the fermentation broth (from 15.7 g L?1 up to 33 g L?1). Integration of the vacuum with the bioreactor resulted in enhanced ABE productivity by 100% and complete utilization of glucose as opposed to a significant amount of residual glucose in the control batch fermentation. CONCLUSION: This research demonstrated that vacuum fermentation technology can be used for in situ butanol recovery during ABE fermentation and that C. beijerinckii 8052 can tolerate vacuum conditions, with no negative effect on cell growth and ABE production. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
研究了用油醇为萃取剂进行丙酮/丁醇游离细胞间歇和补料间歇萃取发酵过程。结果表明,萃取发酵可以减轻产物对微生物的抑制作用,提高初始底物浓度,增加发酵速率。建立了间歇萃取发酵的动力学模型,该模型能够描述在间歇萃取发酵过程中底物、微生物、产物及pH的变化规律。  相似文献   

17.
将水溶性的三聚氰胺树脂改性成油溶性的三聚氰胺树脂,目的是与性能优越的醇酸树脂混溶,提高其耐水性、耐候性、耐磨性和耐腐蚀性。用醇类改性主要有甲醇、乙醇、丁醇和异丁醇,其中甲醇、乙醇极性较大,而异丁醇由于甲基位阻效应,反应较慢,所以丁醇改性效果较好。用丁醇改性有一步法和两步法,但没有本质的区别。一步法是羟甲基化和醚化一步完成,两步法是羟甲基化和醚化分步完成,一步法反应始终处于弱酸性,而两步法是先碱性的羟甲基化后弱酸性的醚化阶段,国内目前主要是两步法。本文主要是对三聚氰胺树脂丁醇改性过程中产生的凝胶现象进行分析与探讨,通过实验并提出了防止凝胶现象发生的相应措施。  相似文献   

18.
Acetone–butanol–ethanol(ABE)fermentation process can be exploited for the generation of butanol as biofuel,however it does need to overcome its low volumetric solvent productivity before it can commercially compete with fossil fuel technologies.In this regard,mathematical modelling and simulation analysis are tools that can serve as the base for process engineering development of biological systems.In this work,a novel phenomenological kinetic model of Clostridium acetobutylicum ATCC 824 was considered as a benchmark system to evaluate the behaviour of an ABE fermentation under different process configurations using both free and immobilized cells:single stage batch operation,fed-batch,single stage Continuous Stirred Tank Reactor(CSTR)and multistage CSTRs with and without biomass recirculation.The proposed model achieved a linear correlation index r~2=0.9952 and r~2=0.9710 over experimental data for free and immobilized cells respectively.The predicted maximum butanol concentration and productivity obtained were 13.08 g·L~(-1)and 1.9620 g·L~(-1)·h~(-1)respectively,which represents an increase of 1.01%and 990%versus the currently developed industrial scale process reported currently into the literature.These results provide a reliable platform for the design and optimization of the ABE fermentation system and showcase the adequate predictive nature of the proposed model.  相似文献   

19.
对实验室菌种进行筛选后,得到一株能利用纤维素水解液木糖发酵生产丁醇的菌株。研究发现,该菌株不仅能利用水解液中的葡萄糖,还可以利用水解液中的木糖。对菌种生长特性探索,批式发酵中碳源、氮源以及CaCO3等条件优化后,得到最佳种子培养时间为20~24 h,并确定了木糖浓度为20 g/L的纤维素水解液用于15 L发酵罐实验,在37 ℃静置培养84 h,丁醇产量10.95 g/L,总溶剂16.78 g/L(丙酮、乙醇、丁醇三者之和),木糖利用率达到70%以上,总溶剂转化率为39.4%。解决了纤维素水解液中木糖不能被利用而造成的经济损失问题。  相似文献   

20.
An effective in situ recovery of acetone, butanol and ethanol (ABE) from fermentation broth is requisite to overcome the low productivity of ABE production. Pervaporation has proven to be one of the best methods for recovering ABE from fermentation broth. We fabricated an immobilized ionic liquid-polydimethylsiloxane (PDMS) membrane in which a [Tf2N]? based ionic liquid covalently bound to the PDMS backbone polymer and used it to recover ABE from aqueous solution by pervaporation. Permeate flux of immobilized IL-PDMS membrane was 7.8 times higher than that of conventional supported IL-PDMS membrane (where ILs are physically absorbed on the supported membrane). Butanol enrichment factor of immobilized IL-PDMS membrane was three-times higher than that of PDMS membrane. In addition, high enrichment factor both to acetone and ethanol as well as high operational stability of immobilized IL-PDMS membrane can enhance the efficacy of ABE recovery by employing this membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号