首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, multi‐switching combination–combination synchronization scheme has been investigated between a class of four non‐identical fractional‐order chaotic systems. The fractional‐order Lorenz and Chen's systems are taken as drive systems. The combination–combination of multi drive systems is then synchronized with the combination of fractional‐order Lü and Rössler chaotic systems. In multi‐switching combination–combination synchronization, the state variables of two drive systems synchronize with different state variables of two response systems simultaneously. Based on the stability of fractional‐order chaotic systems, the multi‐switching combination–combination synchronization of four fractional‐order non‐identical systems has been investigated. For the synchronization of four non‐identical fractional‐order chaotic systems, suitable controllers have been designed. Theoretical analysis and numerical results are presented to demonstrate the validity and feasibility of the applied method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Haibo Bao  Ju H. Park  Jinde Cao 《Complexity》2016,21(Z1):106-112
This article presents new theoretical results on the synchronization for a class of fractional‐order delayed neural networks with hybrid coupling that contains constant coupling and discrete‐delay coupling. This is the first attempt to investigate the synchronization problem of fractional‐order coupled delayed neural networks. Based on the fractional‐order Lyapunov stability theorem and Kronecker product properties, sufficient criteria are established to ensure the fractional‐order coupled neural network to achieve synchronization. Numerical simulations are given to illustrate the correctness of the theoretical results. © 2015 Wiley Periodicals, Inc. Complexity 21: 106–112, 2016  相似文献   

3.
This article deals with the problem of synchronization of fractional‐order memristor‐based BAM neural networks (FMBNNs) with time‐delay. We investigate the sufficient conditions for adaptive synchronization of FMBNNs with fractional‐order 0 < α < 1. The analysis is based on suitable Lyapunov functional, differential inclusions theory, and master‐slave synchronization setup. We extend the analysis to provide some useful criteria to ensure the finite‐time synchronization of FMBNNs with fractional‐order 1 < α < 2, using Mittag‐Leffler functions, Laplace transform, and linear feedback control techniques. Numerical simulations with two numerical examples are given to validate our theoretical results. Presence of time‐delay and fractional‐order in the model shows interesting dynamics. © 2016 Wiley Periodicals, Inc. Complexity 21: 412–426, 2016  相似文献   

4.
In this paper, a novel fractional‐integer integral type sliding mode technique for control and generalized function projective synchronization of different fractional‐order chaotic systems with different dimensions in the presence of disturbances is presented. When the upper bounds of the disturbances are known, a sliding mode control rule is proposed to insure the existence of the sliding motion in finite time. Furthermore, an adaptive sliding mode control is designed when the upper bounds of the disturbances are unknown. The stability analysis of sliding mode surface is given using the Lyapunov stability theory. Finally, the results performed for synchronization of three‐dimensional fractional‐order chaotic Hindmarsh‐Rose (HR) neuron model and two‐dimensional fractional‐order chaotic FitzHugh‐Nagumo (FHN) neuron model.  相似文献   

5.
In this paper, the synchronization for a class of nonlinear chaotic systems with delays is proposed by using periodically intermittent nonlinear feedback control. Some synchronization criteria are derived based on Lyapunov functional theory and several differential inequalities such as Halanay inequality. As a special case, some sufficient conditions are obtained to ensure the synchronization of nonlinear systems without delays. Finally, some numerical simulations are presented to verify the theoretical results.  相似文献   

6.
This article focuses on the problem of exponential synchronization for fractional‐order chaotic systems via a nonfragile controller. A criterion for α‐exponential stability of an error system is obtained using the drive‐response synchronization concept together with the Lyapunov stability theory and linear matrix inequalities approach. The uncertainty in system is considered with polytopic form together with structured form. The sufficient conditions are derived for two kinds of structured uncertainty, namely, (1) norm bounded one and (2) linear fractional transformation one. Finally, numerical examples are presented by taking the fractional‐order chaotic Lorenz system and fractional‐order chaotic Newton–Leipnik system to illustrate the applicability of the obtained theory. © 2014 Wiley Periodicals, Inc. Complexity 21: 114–125, 2015  相似文献   

7.
Taiyan Jing  Fangqi Chen 《Complexity》2016,21(Z1):211-219
The problem of finite‐time lag synchronization of delayed neural networks via periodically intermittent control is studied. In two sections, based on the same finite‐time stability theory and using the same sliding mode control, by designing a periodically intermittent feedback controller and adjusting periodically intermittent control strengths with the updated laws, we achieve the finite‐time lag synchronization between two time delayed networks. In addition, we ensure that the trajectory of the error system converges to a chosen sliding surface within finite time and keeps it on forever. Finally, two examples are presented to verify the effectiveness of the analytical results obtained here. © 2015 Wiley Periodicals, Inc. Complexity 21: 211–219, 2016  相似文献   

8.
This paper is devoted to investigate synchronization and antisynchronization of N‐coupled general fractional‐order complex chaotic systems described by a unified mathematical expression with ring connection. By means of the direct design method, the appropriate controllers are designed to transform the fractional‐order error dynamical system into a nonlinear system with antisymmetric structure. Thus, by using the recently established result for the Caputo fractional derivative of a quadratic function and a fractional‐order extension of the Lyapunov direct method, several stability criteria are derived to ensure the occurrence of synchronization and antisynchronization among N‐coupled fractional‐order complex chaotic systems. Moreover, numerical simulations are performed to illustrate the effectiveness of the proposed design.  相似文献   

9.
In the present article, the authors have proposed a modified projective adaptive synchronization technique for fractional‐order chaotic systems. The adaptive projective synchronization controller and identification parameters law are developed on the basis of Lyapunov direct stability theory. The proposed method is successfully applied for the projective synchronization between fractional‐order hyperchaotic Lü system as drive system and fractional‐order hyperchaotic Lorenz chaotic system as response system. A comparison between the effects on synchronization time due to the presence of fractional‐order time derivatives for modified projective synchronization method and proposed modified adaptive projective synchronization technique is the key feature of the present article. Numerical simulation results, which are carried out using Adams–Boshforth–Moulton method show that the proposed technique is effective, convenient and also faster for projective synchronization of fractional‐order nonlinear dynamical systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
研究分数阶不确定多混沌系统的自适应滑模同步,通过构造滑模面,设计控制器和适应规则,能够满足滑模面的稳定性与到达性,进而得到分数阶不确定多混沌系统取得自适应滑模同步的充分性条件,研究表明:分数阶不确定多混沌系统满足在一定条件下能够取得自适应滑模同步.  相似文献   

11.
This article investigates the optimal synchronization of two different fractional‐order chaotic systems with two kinds of cost function. We use calculus of variations for minimizing cost function subject to synchronization error dynamics. We introduce optimal control problem to solve fractional Euler–Lagrange equations. Optimal control signal and minimum time of synchronization are obtained by proposed method. Examples show the optimal synchronization of two different systems with two different cost functions. First, we use an ordinary integer cost function then we use a fractional‐order cost function and comparing the results. Finally, we suggest a cost function which has the optimal solution of this problem, and we can extend this solution to solve other synchronization problems. © 2016 Wiley Periodicals, Inc. Complexity 21: 401–416, 2016  相似文献   

12.
In this paper, a new fractional‐order chaotic system and an adaptive synchronization of fractional‐order chaotic system are proposed. Parameters adaption laws are obtained to design adaptive controllers using Lyapunov stability theory of fractional‐order system. Finally, reliability of designed controllers and risk analysis of adaptive synchronization problem are formulated and, risk of using the proposed controllers in presences of external disturbances are demonstrated. Also, risk of controllers are reduced using an optimizing method. Numerical examples are used to verify the performance of the proposed controllers.  相似文献   

13.
This paper deals with the synchronization of two coupled identical chaotic systems with parameter mismatch via using periodically intermittent control. In general, parameter mismatches are considered to have a detrimental effect on the synchronization quality between coupled identical systems: in the case of small parameter mismatches the synchronization error does not decay to zero or even a nonzero mean. Larger values of parameter mismatches can even result in the loss of synchronization. via intermittent control with periodically intervals, we can obtain the weak synchronization. Some sufficient conditions for the stabilization and weak synchronization of a large class of coupled identical chaotic systems will be derived by using Lyapunov stability theory. The analytical results are confirmed by numerical simulations.  相似文献   

14.
This paper deals with the dissipativity and synchronization control of fractional‐order memristive neural networks (FOMNNs) with reaction‐diffusion terms. By means of fractional Halanay inequality, Wirtinger inequality, and Lyapunov functional, some sufficient conditions are provided to ensure global dissipativity and exponential synchronization of FOMNNs with reaction‐diffusion terms, respectively. The underlying model and the obtained results are more general since the reaction‐diffusion terms are first introduced into FOMNNs. The given conditions are easy to be checked, and the correctness of the obtained results is confirmed by a living example.  相似文献   

15.
In this article, based on the stability theory of fractional‐order systems, chaos synchronization is achieved in the fractional‐order modified Van der Pol–Duffing system via a new linear control approach. A fractional backstepping controller is also designed to achieve chaos synchronization in the proposed system. Takagi‐Sugeno fuzzy models‐based are also presented to achieve chaos synchronization in the fractional‐order modified Van der Pol–Duffing system via linear control technique. Numerical simulations are used to verify the effectiveness of the synchronization schemes. © 2015 Wiley Periodicals, Inc. Complexity 21: 116–124, 2016  相似文献   

16.
Song Zheng 《Complexity》2016,21(Z1):547-556
This paper studies the projective synchronization behavior in a drive‐response dynamical network with coupling time‐varying delay via intermittent impulsive control. Different from the most publications on drive‐response dynamical networks under the general impulsive control, here the impulsive effects can only exist at control windows, not during the whole time. Moreover, intermittent impulsive control does not need the limitation of the upper bound of the impulsive intervals. By utilizing the Lyapunov‐Razumikhin technique, some sufficient conditions for the projective synchronization are derived. Numerical simulations are provided to verify the correctness and effectiveness of the proposed method and results. © 2016 Wiley Periodicals, Inc. Complexity 21: 547–556, 2016  相似文献   

17.
In the present article, the authors have studied the dynamical behavior of delay‐varying computer virus propagation (CVP) model with fractional order derivative, and it is found that the chaotic attractor exists in the considered fractional order system. In order to eliminate the chaotic behavior of fractional order delay‐varying CVP model, feedback controlmethod is used. This article also dealswith the synchronization between controlled and chaotic delay‐varying CVPmodel via active controlmethod. The fractional derivative is described in the Caputo sense. Numerical simulation results are carried out by means of Adams‐Boshforth‐Moultonmethod with the help ofMATLAB, and the results are successfully depicted through graphs .Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
This article investigates the chaos control problem for the fractional‐order chaotic systems containing unknown structure and input nonlinearities. Two types of nonlinearity in the control input are considered. In the first case, a general continuous nonlinearity input is supposed in the controller, and in the second case, the unknown dead‐zone input is included. In each case, a proper switching adaptive controller is introduced to stabilize the fractional‐order chaotic system in the presence of unknown parameters and uncertainties. The control methods are designed based on the boundedness property of the chaotic system's states, where, in the proposed methods the nonlinear/linear dynamic terms of the fractional‐order chaotic systems are assumed to be fully unknown. The analytical results of the mentioned techniques are proved by the stability analysis theorem of fractional‐order systems and the adaptive control method. In addition, as an application of the proposed methods, single input adaptive controllers are adopted for control of a class of three‐dimensional nonlinear fractional‐order chaotic systems. And finally, some numerical examples illustrate the correctness of the analytical results. © 2014 Wiley Periodicals, Inc. Complexity 21: 211–223, 2015  相似文献   

19.
Song Zheng 《Complexity》2016,21(5):131-142
Synchronization and control of nonlinear dynamical systems with complex variables has attracted much more attention in various fields of science and engineering. In this article, we investigate the problem of impulsive synchronization for the complex‐variable delayed chaotic systems with parameters perturbation and unknown parameters in which the time delay is also included in the impulsive moment. Based on the theories of adaptive control and impulsive control, synchronization schemes are designed to make a class of complex‐variable chaotic delayed systems asymptotically synchronized, and unknown parameters are identified simultaneously in the process of synchronization. Sufficient conditions are derived to synchronize the complex‐variable chaotic systems include delayed impulses. To illustrate the effectiveness of the proposed schemes, several numerical examples are given. © 2014 Wiley Periodicals, Inc. Complexity 21: 131–142, 2016  相似文献   

20.
A second‐order finite difference/pseudospectral scheme is proposed for numerical approximation of multi‐term time fractional diffusion‐wave equation with Neumann boundary conditions. The scheme is based upon the weighted and shifted Grünwald difference operators approximation of the time fractional calculus and Gauss‐Lobatto‐Legendre‐Birkhoff (GLLB) pseudospectral method for spatial discretization. The unconditionally stability and convergence of the scheme are rigorously proved. Numerical examples are carried out to verify theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号