首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Large and extra-large pore zeolites have been widely applied in industrial areas as catalysts, adsorbents, etc. Among them, silica and/or aluminosilicate zeolites have been attracted great attention due to their excellent hydrothermal stability and strong acidity. However, a great deal of zeolite structures are still not available in the form of silica and/or aluminosilicate. Herein, we report the synthesis of pure silica and aluminosilicate large-pore zeolites, denoted as NUD-14 and Al-NUD-14, respectively, by using a designed cation 1-ethyl-4-phenylpyridinium as an organic structure-directing agent (OSDA). NUD-14 has an intersecting 12×11×11-member ring pore system, which is isostructural to the germanosilicate PUK-16 zeolite with a POS topology. The OSDAs can be completely removed from the framework by calcination. NUD-14 and Al-NUD-14 possess excellent acid and hydrothermal stabilities, superior to the germanosilicate POS zeolite. The incorporation of Al into the zeolite framework makes the Al-NUD-14 zeolite possess medium and strong acidities. The successful synthesis of NUD-14 consisting of a rare odd-member ring pore structure may provide a platform for interesting size- and shape-selective catalytic applications.  相似文献   

2.
The Al location in zeolites can have massive influences on the zeolite properties because it directly correlates with the cationic active sites. Herein, the synthesis of IFR zeolites with controlled Al distribution at different tetrahedral sites (T sites) is reported. The computational calculations suggest that organic structure‐directing agents (OSDAs) used for zeolite synthesis can alter the energetically favorable T sites for Al. Zeolite products synthesized under identical conditions but with different OSDAs are found to have altered fractions of Al at different T sites in accordance with the energies derived from the zeolite–OSDA complexes. Our finding thus provides evidence for the ability of OSDAs to direct Al into more energetically favorable T sites, thereby offering rational synthetic guidelines for the selective placement of Al into specific crystallographic sites.  相似文献   

3.
栾慧敏  雷驰  马野  吴勤明  朱龙凤  徐好  韩世超  朱秋艳  刘小龙  孟祥举  肖丰收 《催化学报》2021,42(4):563-570,中插5-中插12
高硅沸石具有优异的热稳定性、水热稳定性、大的微孔体积、高表面积和均匀的微孔孔道,因而广泛应用于催化领域.然而,高硅沸石的合成往往需要使用有机结构导向剂,不但增加了沸石合成成本,而且还产生了大量的三废排放.为了解决这个问题,我们发展了在无有机导向剂存在条件下采用沸石晶种诱导合成沸石的方法,但是该方法合成的沸石产物骨架富铝...  相似文献   

4.
《中国化学快报》2020,31(7):1951-1955
Zeolites have been widely applied in many chemical processes owing to their featured microporous framework structures. Organic structure-directing agents (OSDAs) play an important role during of the formation of zeolite frameworks via non-bonding host-guest interactions. Understanding these interactions is crucial to the design of OSDAs and the synthesis of target zeolites. Here, we report a molecular simulation study in the host-guest interactions between zeolite framework STW and 21 alkylated imidazolium and pyrazolium cations that have been used as the OSDAs for the synthesis of STW-type zeolites. We find that OSDAs that have successfully directed the formation of STW exhibit stronger host-guest interactions than unsuccessful ones. Furthermore, we find all successful OSDAs possess relatively more negative atomic charges on nitrogen atoms and smaller dipole moments. According to this finding, we have designed seven new alkylated imidazolium and pyrazolium cations that may be suitable for zeolite STW, and verified their structure-directing capability by molecular simulation calculations.  相似文献   

5.
Sorption of n-hexane on monodimensional pure silica SSZ-35, CIT-5, ZSM-12, and ZSM-22 zeolites with different pore dimension and on recently synthesized ITQ-29 was studied by IR spectroscopic and computational chemistry methods. Heats of sorption of n-hexane on these zeolites was determined experimentally from the temperature dependence of the intensity of IR bands of sorbed hexane as well as from theoretical calculations. Calculations have shown the different orientations of sorbed hexane molecules inside zeolite channels, which depend on the type of zeolite and loading. At high loadings, ordering of hexane inside the channels is observed due to optimization of sorbate-sorbate and sorbate-zeolite interaction energies. Such ordering is responsible for the increase of the sorption energy. A decrease of the sorption energy upon increasing the pore dimension of zeolite was observed, in agreement with results previously published in the literature. Effects of pore diameter of zeolites and ordering of molecules inside zeolite channels on the sorption energy of hexane are discussed.  相似文献   

6.
Organic structure-directing agents (OSDAs) are often employed for synthesis of zeolites with desired frameworks. A priori prediction of such OSDAs has mainly relied on the interaction energies between OSDAs and zeolite frameworks, without cost considerations. For practical purposes, the cost of OSDAs becomes a critical issue. Therefore, the development of a computational de novo prediction methodology that can speed up the trial-and-error cycle in the search for less expensive OSDAs is desired. This study utilized a nature-inspired ant colony optimization method to predict physicochemically and/or economically preferable OSDAs, while also taking molecular similarity and heuristics of zeolite synthesis into consideration. The prediction results included experimentally known OSDAs, candidates having structures closely related to known OSDAs, and novel ones, suggesting the applicability of this approach.

Inspired by the exploratory methods of ant colonies, adaptive optimization was employed to explore the chemical space for organic molecules that guide zeolite crystallization, giving both physicochemically and economically promising molecules.  相似文献   

7.
The effect of pure and high silica Hβ zeolites on the catalytic performance of toluene combustion over Pd/H/3 catalyst was evaluated.Pure and high silica β zeolites were prepared by direct synthesis procedures,then 0.1 wt% of palladium was impregnated on different Hβ zeolites via incipient wetness technique using palladium nitrate as the Pd source.The Pd/Hβ catalysts were characterized by XRD,N2 adsorption/desorption,H2O adsorption,NH3-TPD,H2-TPR and XPS techniques.With increasing the SIO2/Al2O3 ratio of β zeolite,the activity of the Pd/Hβ catalysts for toluene combustion increased clearly and the pure silica β zeolite supported Pd catalyst showed the best catalytic activity.The superior catalytic performance of Pd/β catalyst prepared from pure silica β zeolite was attributed to its high hydrophobicity and the preserving ability for PdO active species.  相似文献   

8.
Extra-large-pore zeolites for processing large molecules have long been sought after by both the academia and industry. However, the synthesis of these materials, particularly extra-large-pore pure silica zeolites, remains a big challenge. Herein we report the synthesis of a new extra-large-pore silica zeolite, designated NUD-6, by using an easily synthesized aromatic organic cation as structure-directing agent. NUD-6 possesses an intersecting 16×8×8-membered ring pore channel system constructed by four-connected (Q4) and unusual three-connected (Q3) silicon species. The organic cations in NUD-6 can be removed in nitric acid to yield a porous material with high surface area and pore volume. The synthesis of NUD-6 presents a feasible means to prepare extra-large pore silica zeolites by using assembled aromatic organic cations as structure-directing agents.  相似文献   

9.
Crystalline molecular sieves are used in numerous applications, where the properties exploited for each technology are the direct consequence of structural features. New materials are typically discovered by trial and error, and in many cases, organic structure‐directing agents (OSDAs) are used to direct their formation. Here, we report the first successful synthesis of a specified molecular sieve through the use of an OSDA that was predicted from a recently developed computational method that constructs chemically synthesizable OSDAs. Pentamethylimidazolium is computationally predicted to have the largest stabilization energy in the STW framework, and is experimentally shown to strongly direct the synthesis of pure‐silica STW. Other OSDAs with lower stabilization energies did not form STW. The general method demonstrated here to create STW may lead to new, simpler OSDAs for existing frameworks and provide a way to predict OSDAs for desired, theoretical frameworks.  相似文献   

10.
Extra‐large‐pore zeolites for processing large molecules have long been sought after by both the academia and industry. However, the synthesis of these materials, particularly extra‐large‐pore pure silica zeolites, remains a big challenge. Herein we report the synthesis of a new extra‐large‐pore silica zeolite, designated NUD‐6, by using an easily synthesized aromatic organic cation as structure‐directing agent. NUD‐6 possesses an intersecting 16×8×8‐membered ring pore channel system constructed by four‐connected (Q4) and unusual three‐connected (Q3) silicon species. The organic cations in NUD‐6 can be removed in nitric acid to yield a porous material with high surface area and pore volume. The synthesis of NUD‐6 presents a feasible means to prepare extra‐large pore silica zeolites by using assembled aromatic organic cations as structure‐directing agents.  相似文献   

11.
Crystalline molecular sieves are used in numerous applications, where the properties exploited for each technology are the direct consequence of structural features. New materials are typically discovered by trial and error, and in many cases, organic structure‐directing agents (OSDAs) are used to direct their formation. Here, we report the first successful synthesis of a specified molecular sieve through the use of an OSDA that was predicted from a recently developed computational method that constructs chemically synthesizable OSDAs. Pentamethylimidazolium is computationally predicted to have the largest stabilization energy in the STW framework, and is experimentally shown to strongly direct the synthesis of pure‐silica STW. Other OSDAs with lower stabilization energies did not form STW. The general method demonstrated here to create STW may lead to new, simpler OSDAs for existing frameworks and provide a way to predict OSDAs for desired, theoretical frameworks.  相似文献   

12.
Recent research has demonstrated a new synthesis route to useful zeolites such as beta, RUB-13, and ZSM-12 via seed-assisted, organic structure-directing agent (OSDA)-free synthesis, although it had been believed that these zeolites could be essentially synthesized with OSDAs. These zeolites are obtained by adding seeds to the gels that otherwise yield other zeolites; however, the underlying crystallization mechanism has not been fully understood yet. Without any strategy, it is unavoidable to employ a trial-and-error procedure for broadening zeolite types by using this synthesis method. In this study, the effect of zeolite seeds with different framework structures is investigated to understand the crystallization mechanism of zeolites obtained by the seed-assisted, OSDA-free synthesis method. It has been found that the key factor in the successful synthesis of zeolites in the absence of OSDA is the common composite building unit contained both in the seeds and in the zeolite obtained from the gel after heating without seeds. A new working hypothesis for broadening zeolite types by the seed-assisted synthesis without OSDA is proposed on the basis of the findings of the common composite building units in zeolites. This hypothesis enables us to design the synthesis condition of target zeolites. The validity of the hypothesis is experimentally tested and verified by synthesizing several zeolites including ECR-18 in K-aluminosilicate system.  相似文献   

13.
Given their great potential as new industrial catalysts and adsorbents, the search for new zeolite structures is of major importance in nanoporous materials chemistry. However, although innumerable theoretical frameworks have been proposed, none of them have been synthesized by a priori design yet. We generated a library of diazolium‐based cations inspired from the organic structure‐directing agents (OSDAs) recently reported to give two structurally related zeolites (PST‐21 and PST‐22) under highly concentrated, excess‐fluoride conditions and compared the stabilization energies of each OSDA cation in ten pre‐established hypothetical structures. A combination of the ability of the OSDA selected in this way with the excess‐fluoride approach has allowed us to crystallize PST‐30, the targeted aluminosilicate zeolite structure. We anticipate that our approach, which aims to rationally couple computational predictions of OSDAs with an experimental setup, will advance further development in the synthesis of zeolites with desired properties.  相似文献   

14.
Large‐pore microporous materials are of great interest to process bulky hydrocarbon and biomass‐derived molecules. ITQ‐27 (IWV) has a two‐dimensional pore system bounded by 12‐membered rings (MRs) that lead to internal cross‐sections containing 14 MRs. Investigations into the catalytic behavior of aluminosilicate (zeolite) materials with this framework structure have been limited until now due to barriers in synthesis. The facile synthesis of aluminosilicate IWV in both hydroxide and fluoride media is reported herein using simple, diquaternary organic structure‐directing agents (OSDAs) that are based on tetramethylimidazole. In hydroxide media, a zeolite product with Si/Al=14.8–23.2 is obtained, while in fluoride media an aluminosilicate product with Si/Al up to 82 is synthesized. The material produced in hydroxide media is tested for the hydroisomerization of n‐hexane, and results from this test reaction suggest that the effective pore size of zeolites with the IWV framework structure is similar to but slightly larger than that of ZSM‐12 (MTW), in fairly good agreement with crystallographic data.  相似文献   

15.
Electrides are materials in which alkali metals (Li through Cs) ionize to form bound alkali cations and "excess" electrons. The electrons reside in large cavities or channels or both in the host lattice. We report here the first synthesis of thermally stable inorganic electrides with cation-to-electron ratios of 1:1 as in organic electrides. Although alkali metal adducts to alumino-silicate zeolites are well known, the cation-to-electron ratio is generally 3:1 or greater because these zeolites contain alkali cations prior to incorporation of the alkali metal. In this work, two pure silica zeolites, ITQ-4and ITQ-7, with pore diameters of approximately 7 A, absorb up to 40 wt % cesium from the vapor phase (even at room temperature). The other alkali metals (except Li) can also be introduced at elevated temperatures. The optical and magnetic properties of the cesium-loaded samples suggest ionization to form Cs+ and e- with substantial electron-spin pairing. The metal-loaded samples are stable to at least 100 degrees C and are able to reduce small aromatic molecules such as benzene and naphthalene to the radical anions within the pores of the zeolite.  相似文献   

16.
ZSM-5/β co-crystalline zeolites with different content of ZSM-5 have been synthesized by adding different amount of ZSM-5 to the synthetic system of β zeolite with NaAlO2, silica sol as the source of aluminum and silica, respectively, and TEA as the template under controlled condition of the synthesis. The ZSM-5/β co-crystalline zeolite was studied by XRD, SEM, BET and NH3-TPD. The reaction activity of toluene alkylation was investigated with a mixture of toluene-methanol as the feedstock in a pulse micro-reactor over the ZSM-5/β co-crystalline zeolite. It is found that ZSM-5/β co-crystalline zeolite has two kinds of zeolite structure including ZSM-5 and β zeolite, not in the form of a physical mixture. The pore structure of ZSM-5/β co-crystalline zeolites is different from that for β zeolite, ZSM-5 and their physical mixture. In addition, the peaks of both high and low temperature desorption of ammonia over the ZSM-5/β co-crystalline zeolite shift 23 ℃ to lower temperatures and the acid amount of its strong acid is 3% more than the physical mixture. So the ZSM-5/β co-crystalline zeolite produces the highest content of xylene, which is 10.4% higher than the physical mixture. And the ZSM-5/β co-crystalline zeolite has better selectivity for toluene alkylation and weaker de-methylation than β zeolite, ZSM-5 and their physical mixture.  相似文献   

17.
Core-shell structured ZSM-5@Silicalite-1 zeolite could effectively hinder the deactivation of catalyst surface. Currently, organic structure directing agents(OSDAs) are necessary in the conventional route for the synthesis of this core-shell zeolite under hydrothermal conditions, which is costly and environmental-unfriendly. In this research, a synthesis of the core-shell structured ZSM-5@Silicalite-1 zeolite with a strategy of alcohol filling and zeolite seeding without any organic template or solvent is exhibited. The obtained products are well characterized by X-ray powder diffractometer(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), N2 sorption isotherms, solid magic angle spinning(MAS) NMR, temperature-programmed-desorption of ammonia(NH3-TPD), and X-ray photoelectron spectroscopy(XPS) techniques, in order to confirm the core-shell structure. More importantly, the core-shell structured ZSM-5@Silicalite-1 zeolite exhibits a long lifetime and a high p-xylene selectivity in the alkylation of toluene with methanol, compared with the conventional ZSM-5 catalyst.  相似文献   

18.
Despite previous reports showing that crystallization kinetics affects zeolite phase selectivity because zeolites are metastable species in their synthesis solution rather than thermodynamic end points, the critical kinetics-controlling parameter is yet to be determined. This work elucidated the effect of tetraethyl orthosilicate (TEOS) hydrolysis before hydrothermal treatment on the final zeolite phase selectivity in the ionic liquid-templated synthesis of 10-membered ring zeolites (MFI- or TON-type zeolites). The results showed that the dissolved silica concentration in the synthesis solution, which is controlled by varying the TEOS hydrolysis temperature and addition rate, induced heterogeneous nuclear growth. Specifically, in 1-butyl-3-methylimidazolium ([BMIM]Br)-directed syntheses, the high and low concentrations of dissolved silica species led to MFI and TON zeolite formation, respectively. The experimental results are supported by silica polymerization modeling using the Reaction Ensemble Monte Carlo method and theoretical calculations on composite building unit formation. The results are valuable for understanding the nucleation mechanism in zeolite crystallization.  相似文献   

19.
The sorption and diffusion properties of ethanol, 1,1,1-trichloroethane (TCA) and trichloroethylene (TCE) were determined in silicalite-filled and dealuminized-Y-zeolite (DAY)-filled poly[dimethylsiloxane] (PDMS) membranes at 25, 100 and 150°C. Zeolite filling results in increased solubility coefficients (S) for polar solvents like ethanol over pure PDMS. No significant increase in S is observed in case of TCA and TCE which act as good solvents for PDMS. However, at higher temperatures, the sorption is higher in zeolite-filled membranes even for the good solvents. The VOC diffusivity decreases with increasing degree of zeolite filling because of higher characteristic diffusion time in zeolites (for ethanol) and increasing tortuosity of the diffusion path (for TCA). Due to the presence of carbon=carbon double bond, TCE exhibits marginal diffusivity drop in zeolite-filled membranes. The specific zeolite-polymer interactions, that is, tendency of zeolite pore blocking by polymer chains or the formation of voids on zeolite-polymer interface are influenced by the zeolite pore size and type of VOC permeating through the composite membrane. The variation in experimentally observed ethanol permeability due to zeolite filling could be qualitatively estimated from the sorption-diffusion data.  相似文献   

20.
Extra‐large‐pore zeolites have attracted much interest because of their important applications for processing larger molecules. Although great progress has been made in academic science and industry, it is challenging to synthesize these materials. A new extra‐large‐pore zeolite SYSU‐3 (Sun Yat‐sen University no. 3) has been synthesized by using a novel sophoridine derivative as an organic structure‐directing agent (OSDA). The framework structure was solved and refined using continuous rotation electron diffraction (cRED) data from nanosized crystals. SYSU‐3 exhibits a new zeolite framework topology, which has the first 24×8×8‐ring extra‐large‐pore system and a framework density (FD) as low as 11.4 T/1000 Å3. The unique skeleton of the OSDA plays an essential role in the formation of the distinctive zeolite structure. This work provides a new perspective for developing new zeolitic materials by using alkaloids as cost‐effective OSDAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号