首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a new scheme for designing a H stabilizing controller for discrete‐time Takagi‐Sugeno fuzzy systems with actuator saturation and external disturbances. The weighting‐dependent Lyapunov functions approach is used to design a robust static output‐feedback controller. To address the input saturation problem, both constrained and saturated control input cases are considered. In both cases, stabilization conditions of the fuzzy system are formulated as a convex optimization problem in terms of linear matrix inequalities. Two simulation examples are included to illustrate the effectiveness of the proposed design methods. A comparison with the results given in recent literature on the subject is also presented.  相似文献   

2.
This paper is concerned with the problem of H fuzzy static output feedback control for discrete‐time Takagi‐Sugeno (T‐S) fuzzy systems, and new design methods are presented. By defining a fuzzy Lyapunov function, a new sufficient condition guaranteeing the H performance of the T‐S fuzzy systems is derived, and the condition is expressed by a set of linear matrix inequalities. In comparison with the existing literature, the proposed approach may provide more relaxed condition while ensuring better H performance. The simulation results illustrate the effectiveness of the proposed approach. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

3.
In this paper we shall consider the H control problem using static output feedback. The approach uses some recent results from linear algebra. The main result shows that the H control problem is solvable by a static output feedback controller if and only if there exists a positive definite matrix satisfying two certain quadratic matrix inequalities. A parametrization of all static output feedback H controllers is given.  相似文献   

4.
In this paper, the design of dynamic output feedback control law for polynomial fuzzy systems is studied. The main purpose is to design a tracker control law for fuzzy polynomial systems that are subject to external bounded disturbances. The structure of the control law is considered as fuzzy proportional–integral control. The conditions for deriving the control law are formulated in the form of a sum of square (SOS) feasibility problem. The designed control law will be able to force the system state vector to follow the state vector of a stable reference model in addition to guaranteeing the H performance measure. The simulation results show the efficiency of the proposed method exposed to external disturbance.  相似文献   

5.
In this paper we propose a new approach to solve the static output feedback suboptimal mixed H2/H control problem using a state fixed‐structure feedback design. We formulate the static output feedback problem as a constrained static state feedback problem and obtain three coupled design equations: one Riccati equation, one Lyapunov equation, and a gain equation. We will prove the equivalence of the proposed solution to the existing solution. A very simple iterative algorithm is then presented to solve the design equations for the stabilizing output feedback gain that minimizes an upper bound of H2 norm while satisfying the H disturbance attenuation requirement. A unique feature of the new approach is that it admits the Kalman gain as an initial stabilizing gain to start the above iterative solution procedure, which is computationally attractive and advantageous compared to the direct approach, as the latter has to deal with the difficult algorithm initialization problem. Some illustrative numerical examples are given to demonstrate the effectiveness of the approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
This paper investigates the problem of designing a nonlinear H output feedback controller for a class of polynomial discrete‐time systems. In general, this problem is hard to be formulated in a convex form because the relation between the control input and the Lyapunov function is always not jointly convex. Therefore, the problem cannot be solved via semidefinite programming (SDP). On the basis of the sum of squares (SOS) approach and incorporation of an integrator into the controller, sufficient conditions for the existence of a nonlinear H output feedback controller are given in terms of SOS conditions, which can be solved by an SDP solver. In contrast to the existing methods, a less conservative result is obtained. Finally, numerical examples are used to demonstrate the validity of this integrator approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper studies the problem of H output tracking control for a class of discrete‐time switched systems. Neither the measurability of the system state nor the solvability of the output tracking control problem for each individual subsystem is required. We design controllers for subsystems and a switching law to solve the H output tracking problem for the switched system. The designed controllers use only the measured output feedback, and the switching law is based on the measured output tracking error. In addition, the quadratic function corresponding to each subsystem is not required to be positive definite. A numerical example is provided to demonstrate the feasibility and validity of the proposed design method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This article is concerned with the problems of positive real analysis and control synthesis for discrete-time systems. New linear matrix inequality (LMI) characterisations of positive realness are derived, which enable one to check the positive realness by using parameter-dependent Lyapunov function. The relationship between the proposed characterisations and the existing ones are clarified, which shows that our new results are of less conservatism for characterising the positive realness of discrete-time systems with polytopic uncertainty. In addition, sufficient conditions for static output feedback positive real controller design are given in terms of solutions to a set of linear matrix inequalities. Numerical examples are included for illustration.  相似文献   

9.
In this paper, the H output feedback control problem for a class of stochastic discrete‐time systems with randomly occurring convex‐bounded uncertainties and channel fadings is investigated. A sequence of mutually independent random variables with known probabilistic distributions are utilized to describe the randomness that convex‐bounded uncertainties appear in practical systems. The measurements with channel fadings are given by a stochastic Rice fading model which is regulated by a set of random variables with certain probability density functions. The purpose of this paper is to design an output feedback controller such that the closed‐loop control system is asymptotically stable with a prescribed H performance level. The less conservative results are obtained by employing the stochastic Lyapunov technique. Numerical examples are presented to illustrate effectiveness of the proposed approach.  相似文献   

10.
In this paper, the problem of designing a fixed static output feedback control law which minimizes an upper bound on linear quadratic (LQ) performance measures for r distinct MIMO plants is addressed using linear matrix inequality (LMI) technique. An iterative LMI algorithm is proposed to obtain the solution. Examples are used to demonstrate its effectiveness. Copyright ©1999 John Wiley & Sons, Ltd.  相似文献   

11.
针对一类不确定线性广义时滞系统,给出了静态输出反馈控制器的设计方法.首先基于标称广义时滞系统的稳定条件,以受限线性矩阵不等式形式,给出闭环广义时滞系统正则、无脉冲且渐近稳定的充分条件,同时利用受限矩阵不等式的可行解给出静态输出反馈控制律的一个参数化表示;其次,利用矩阵的正交补,把求受限线性矩阵不等式的可行解问题转化为求严格线性矩阵不等式(LMIs)的可行解;最后应用数值实例说明了所给方法的有效性和正确性.  相似文献   

12.
This note points out that controllers resulting from Corollaries 3.1 and 3.2 and Theorem 3.1 in Saat and Nguang (Int. J. Robust Nonlinear Control 2013; 10.1002/rnc.3130) do not improve over the open‐loop performance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents the novel approaches of designing robust fuzzy static output feedback H controller for a class of nonlinear singularly perturbed systems. Specifically, the considered system is approximated by a fuzzy singularly perturbed model. With the use of linear matrix inequality (LMI) methods, two methods are provided to design fuzzy static output feedback H controllers. The resulted controllers can guarantee that the closed‐loop systems are asymptotically stable and satisfy H performances for sufficiently small ?. In contrast to the existing results, the proposed approaches have two advantages: (i) the gains of controller are solved directly by a set of ?‐independent LMIs, and therefore, the problem of selecting the initial values in iterative LMIs algorithm can be avoided, and (ii) the smaller control input efforts are needed. The given methods are easy to implement and can be applied to both standard and nonstandard nonlinear singularly perturbed systems. Two numerical examples are provided to illustrate the effectiveness of the developed methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A new approach for the design of robust H observers for a class of Lipschitz nonlinear systems with time‐varying uncertainties is proposed based on linear matrix inequalities (LMIs). The admissible Lipschitz constant of the system and the disturbance attenuation level are maximized simultaneously through convex multiobjective optimization. The resulting H observer guarantees asymptotic stability of the estimation error dynamics and is robust against nonlinear additive uncertainty and time‐varying parametric uncertainties. Explicit norm‐wise and element‐wise bounds on the tolerable nonlinear uncertainty are derived. Also, a new method for the robust output feedback stabilization with H performance for a class of uncertain nonlinear systems is proposed. Our solution is based on a noniterative LMI optimization and is less restrictive than the existing solutions. The bounds on the nonlinear uncertainty and multiobjective optimization obtained for the observer are also applicable to the proposed static output feedback stabilizing controller. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This paper is concerned with the reliable static output control of linear time‐varying delay systems with sensor faults. Time‐varying delay is tackled by the input–output transformation and the resulting closed‐loop system lies in the framework of scaled small gain. Some techniques are developed to separate the coupling among the Lyapunov matrix, input matrix, control gain matrix, and output matrix. Based on a relaxed Lyapunov–Krasovskii functional, sufficient conditions for the desired static output controller design with the required performance level are proposed by means of linear matrix inequalities. The effectiveness of the proposed method is validated by two examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The problem of H static output feedback (SOF) control of two‐dimensional (2‐D) discrete systems described by the Fornasini‐Marchesini (FM) second model is investigated in this paper. First, by applying the 2‐D Bounded Real Lemma, the 2‐D H SOF control problem is formulated in terms of a bilinear matrix inequality (BMI). Then, by combining the slack variable technique with two kinds of existing LMI methods, respectively, less conservative sufficient LMI conditions are proposed for the BMI formulation. The relation of these two kinds of LMI conditions are revealed by analyzing the choices of coordinate transformation matrices involved in the first kind of LMI conditions. Finally, a numerical example is provided to demonstrate the effectiveness and merits of the proposed methods.  相似文献   

17.
A computational scheme of solving the nonlinear static output feedback design problems for a class of polynomial nonlinear systems is investigated in this paper. Sufficient conditions to achieve the closed‐loop stability with or without H performance are presented as state‐dependent matrix inequalities, which provides an effective way for the application of the new sum of squares programming technique to obtain computationally tractable solutions. By introducing additional matrix variables, we succeed in eliminating the coupling between system matrices and the Lyapunov matrix. The proposed methodology is also extended to the synthesis for the parameter‐dependent polynomial systems. Robust polynomial output feedback controller is designed in an efficient computational manner. Finally, numerical examples are provided to demonstrate the effectiveness of the proposed methodology. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper the problem of H dynamic feedback control for fuzzy dynamic systems has been studied. First the problem of H dynamic feedback controller designs for complex nonlinear systems, which can be represented by Takagi‐Sugeno (T‐S) fuzzy systems, is presented. Second, based on a Lyapunov function, four new dynamic feedback H fuzzy controllers are developed by adequately considering the interactions among all fuzzy sub‐systems and these dynamic feedback H controllers can be obtained by solving a set of suitable linear matrix inequalities. Finally, two examples are given to demonstrate the effectiveness of the proposed design methods. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

19.
The insensitive multi‐objective H control synthesis problem via dynamic output feedback for linear delta operator systems with insensitivity to sampling time jitter is investigated in the case of small sampling times. The delta‐domain model instead of the standard shift‐domain model is used to avoid the inherent numerical ill‐condition resulting from using the latter model at high sampling rates. Parameter sensitivity function of the transfer function with respect to sampling time is defined to mitigate the effect of sampling time jitter because it may cause significant degradation of the overall system performance. It is worth pointing out that a novel bounded real lemma for delta operator allowing extra degree of freedom for multi‐objective control design is presented by using the well‐known projection lemma. Then, from this new lemma, a two‐step design procedure based on LMI is presented to design insensitive dynamic output feedback controllers such that the resulting closed‐loop system is asymptotically stable and meets the requirement of sensitivity specification. A numerical example is also presented to show the effectiveness of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper deals with the problem of static output feedback (SOF) control design for a class of diffusion partial differential equation (PDE) and ordinary differential equation (ODE) cascades, where the ODE model is used to describe the dynamics of the multi-input and multi-output (MIMO) plant and the diffusion PDE model is employed to represent the dynamics of actuators. The objective of this paper is to develop a simple as well as effective SOF controller via the Lyapunov's direct method such that the resulting closed-loop system is globally exponentially stable. By constructing a quadratic Lyapunov function, the sufficient condition on the globally exponential stability of the closed-loop cascaded system is presented in terms of linear matrix inequality (LMI). Then, an LMI-based design method of the SOF controller is developed on the basis of the obtained stability analysis result. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed design method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号