首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of oxygen exposure on the magnetic properties of ultrathin Co/Si(1 1 1)-7×7 films have been studied. In ultrahigh vacuum environment, Auger electron spectroscopy (AES) analysis shows that no oxygen adsorption occurs on Si(1 1 1)-7×7 surface and Co-Si compound interfaces. As the thickness of Co films increases above 5 monolayers (ML), pure cobalt islands form on the surface and the amount of oxygen on the surface layers increases with increasing the oxygen exposure time. From the results of slight chemical shift and depth profiling measurements, the oxygen is weakly adsorbed on the topmost layer of 15 ML Co/Si(1 1 1) films. The adsorbed oxygen influences the electronic density of states of Co and leads to the changes of the magnetic properties. The appearance of the O/Co interface could modify the stress anisotropy, as a result, the coercivity of ultrathin Co/Si(1 1 1) films are enhanced. As an example for 15 ML Co/Si(1 1 1), the coercivity increases from 140 to 360 Oe with 5000 Langmuir of oxygen exposure.  相似文献   

2.
Magnetic properties of the Co/Ag/Ge(1 0 0) films grown at room temperature and 200 K were studied by the surface magneto-optical Kerr effect (SMOKE). More than 1.5 monolayer Ag buffer layers not only effectively block the interdiffusion between the capped Co layers and the Ge(1 0 0) substrate but also stabilize the magnetic phase. The temperature and thickness dependence on coercivity measurements show that interactions upon the interfaces are strongly correlated to the microstructures.  相似文献   

3.
J.S. Tsay  Y.S. Chen 《Surface science》2006,600(18):3555-3559
Adsorption of oxygen on ultrathin Co/Ir(1 1 1) films thinner than 4 monolayers in an ultrahigh vacuum environment was studied. For oxygen adsorption on cobalt films, the complex adsorption kinetics emerges partly due to the incorporation of oxygen. The amount of oxygen adsorbed at the surfaces is higher than that incorporated into the film as revealed from sputter profiling measurements. At room temperature the CoO layer exhibits paramagnetism and could not contribute to the remanent Kerr intensity. As oxygen exposure increases, the reduction of the Kerr intensity is due to the reduction of the effective layer for the magnetic measurements. Compared with oxygen saturated cobalt films, the concentration of adsorbed oxygen per Co atom shows an oscillatory behavior. A compositional anomaly of a great amount of adsorbed oxygen in submonolayer Co coverage occurs because of the maximized number of adsorption and incorporation sites for oxygen on the surface. A larger charge transfer between Co and oxygen was observed for thinner Co overlayers as revealed from the larger chemical shifts of Auger lines.  相似文献   

4.
The development of devices based on magnetic tunnel junctions has raised new interests on the structural and magnetic properties of the interface Co/MgO. In this context, we have grown ultrathin Co films (≤30 Å) by molecular-beam epitaxy on MgO(0 0 1) substrates kept at different temperatures (TS). Their structural and magnetic properties were correlated and discussed in the context of distinct magnetic anisotropies for Co phases reported in the literature. The sample characterization has been done by reflection high energy electron diffraction, magneto-optical Kerr effect and ferromagnetic resonance. The main focus of the work is on a sample deposited at TS=25 °C, as its particular way of growth has enabled a bct Co structure to settle on the substrate, where it is not normally obtained without specific seed layers. This sample presented the best crystallinity, softer magnetic properties and a four-fold in-plane magnetic anisotropy with Co〈1 1 0〉 easy directions. Concerning the samples prepared at TS=200 and 500° C, they show fcc and polycrystalline structures, respectively and more intricate magnetic anisotropy patterns.  相似文献   

5.
We report combinatorial molecular beam epitaxy synthesis and properties of a ternary epitaxial film of Co and Mn co-doped Ge grown on Ge (0 0 1) substrate. Structural effects were examined in situ by reflection high-energy electron diffraction and ex situ by microbeam X-ray diffraction techniques, and magnetic properties were probed by using magnetooptic Kerr effect. Ternary epitaxial phase diagrams have been studied for total doping concentrations up to 30 at.%, where regions of coherent epitaxy and rough disordered growth and those of near room temperature ferromagnetic ordering have been identified.  相似文献   

6.
Morphology and magnetic properties of Co/Si(1 1 1) interfaces have been investigated using scanning tunneling microscope and surface magneto-optic Kerr effect techniques. As deposited at room temperature for Co/Si(1 1 1), defects have been observed with shapes of dark patches and bright islands on the surface with different Co coverage. The defect formation causes a rough interface. For subsequently deposited Co layers, the interfacial state between Co and the Si substrate results in the appearance of both the longitudinal and polar Kerr loops. After annealing treatments, interdiffusion of Co atoms and Si(1 1 1) substrate occurs as revealed by Auger electron spectroscopy. Scanning tunneling microscope images show the formation of Si clusters with average diameter of 10 nm at high temperatures. The disappearance of ferromagnetism of the films occurs due to the structural and compositional changes.  相似文献   

7.
Ultrathin Fe films have been epitaxially grown at room temperature on standard single crystal Ge(0 0 1) substrates and virtual Ge/Si(0 0 1) substrates. Their magnetic and electronic properties have been investigated in situ by spin polarized inverse photoemission and magneto-optical Kerr effect. In both cases, the onset of ferromagnetism appears definitively at 3 ML, and the overall behavior is very similar in the case of standard and virtual substrates, so that the latter can be employed for growing high quality Fe/Ge/Si interfaces. All the films investigated display uniaxial anisotropy, which is explained in terms of the surface morphology induced by the preparation conditions.  相似文献   

8.
The growth mode, magnetic and magneto-optical properties of epitaxial Au/Co/Au(1 1 1) ultrathin trilayers grown by pulsed-laser deposition (PLD) under ultra-high vacuum are presented. Sapphire wafers buffered with a single-crystalline Mo(1 1 0) buffer layer were used as substrates. Owing to PLD-induced interfacial intermixing at the lower Co/Au(1 1 1) interface, a close-to layer-by-layer growth mode is promoted. Surprisingly, despite this intermixing, ferromagnetic behavior is found at room temperature for coverings starting at 1 atomic layer (AL). The films display perpendicular magnetization with anisotropy constants reduced by 50% compared to TD-grown or electrodeposited films, and with a coercivity more than one order of magnitude lower . The magneto-optical (MO) response in the low Co thickness range is dominated by Au/Co interface contributions. For thicknesses starting at 3 AL Co, the MO response has a linear dependence with the Co thickness, indicative of a continuous-film-like MO behavior.  相似文献   

9.
M. Busch  M. Gruyters  H. Winter 《Surface science》2006,600(13):2778-2784
The growth, structure, and morphology of ultrathin iron oxide layers formed on a Fe(1 1 0) single crystal surface are investigated by Auger electron spectroscopy, low energy electron diffraction, and grazing ion scattering. For Fe oxidation by atomic instead of molecular oxygen, the gas exposure can be reduced by almost two orders of magnitude because surface sticking and dissociation are not limiting the growth process. A well-ordered FeO(1 1 1) film with low defect density is only obtained with atomic oxygen. Compared to the bulk, the FeO lattice is laterally compressed by about 5-6% resulting in an in-plane oxygen (Fe) nearest-neighbor distance of 2.87 Å. Independent of the preparation method, long-range structural order is poor if the oxide film thickness is increased to 3-5 layers. This is attributed to the relatively large lattice mismatch between FeO(1 1 1) and Fe(1 1 0).  相似文献   

10.
A new method was developed to control Co film oxidation in an epitaxially grown Cu(wedge)/Co/Cu(0 0 1) film. By annealing the film at 200 °C within 10−6 Torr oxygen environment, we find that the top Cu wedge controls the Co underlayer oxidation continuously as a function of the Cu film thickness. Magneto-Optic Kerr Effect measurement shows that the exchange bias of the resulting CoO/Co film exhibits a systematic variation with the Cu thickness, thus offering a new method of tailoring the exchange bias of CoO/Co films.  相似文献   

11.
The longitude magneto optical Kerr effect (LMOKE) is investigated on ultrathin Fe film grown on GaAs (0 0 1) substrate with Al overlayer. The formula of the longitude magneto optical Kerr effect is derived to find out the influence of the Al overlayer on the magneto optical properties of Fe/GaAs (0 0 1) sample. Results obtained from this formula fit very well with the experimental data. The change of the Kerr rotation as a function of the incident angle is also given, which can be used to find a proper angle in sample measurement. A numerical simulation was carried out to find out the relation between Kerr rotation and optical properties of the overlayer. Results from this simulation can be used to select the best overlayer material to protect the Fe/GaAs (0 0 1) sample.  相似文献   

12.
The atomic interaction and magnetic properties of ultrathin Fe films grown on cleaved and polished MgO(1 0 0) surfaces were studied by conversion electron Mössbauer spectroscopy (CEMS). 57Fe layers were deposited as probe atoms in different layer positions in 10 ML thick Fe films. Fe layers of different thicknesses were formed on polished and cleaved substrate surfaces at RT deposition. The analysis of the spectra showed no Fe-O2- interaction in MgO/Fe interface. FeO phase formation was excluded. The Mössbauer spectrum of 5 ML 57Fe sample showed enhanced internal magnetic field at 80 K. No interdiffusion of 57Fe and 56Fe atoms was observed between the layers at room temperature.  相似文献   

13.
Magnetization reversal processes and domain structures have been studied in Mo(1 1 0)/Co(0 0 0 1)/Au(1 1 1) structures grown by molecular beam epitaxy on monocrystalline (11–20) sapphire substrates. Wedge-shaped samples with different Co thickness gradients relative to the Mo [0 0 1] direction were fabricated. Observation of the domain structure was performed at room temperature using Kerr microscopy in a Co thickness range varying from 5 to 50 nm, where the magnetization is oriented in the plane of the sample. A Co thickness-dependent coercivity field was determined through analysis of the domain wall position during the reversal process. A preferential orientation of magnetic domain walls was found, with the domains being needle-like. The orientation, as well as the size of the needles, depends on the Co thickness and the orientation of the magnetic field applied in the sample plane.  相似文献   

14.
Using the full potential linearized augmented plane wave (FLAPW) method, thickness dependent magnetic anisotropy of ultrathin FeCo alloy films in the range of 1 monolayer (ML) to 5 ML coverage on Pd(0 0 1) surface has been explored. We have found that the FeCo alloy films have close to half metallic state and well-known surface enhancement in thin film magnetism is observed in Fe atom, whereas the Co has rather stable magnetic moment. However, the largest magnetic moment in Fe and Co is found at 1 ML thickness. Interestingly, it has been observed that the interface magnetic moments of Fe and Co are almost the same as those of surface elements. The similar trend exists in orbital magnetic moment. This indicates that the strong hybridization between interface FeCo alloy and Pd gives rise to the large magnetic moment. Theoretically calculated magnetic anisotropy shows that the 1 ML FeCo alloy has in-plane magnetization, but the spin reorientation transition (SRT) from in-plane to perpendicular magnetization is observed above 2 ML thickness with huge magnetic anisotropy energy. The maximum magnetic anisotropy energy for perpendicular magnetization is as large as 0.3 meV/atom at 3 ML film thickness with saturation magnetization of . Besides, the calculated X-ray magnetic circular dichroism (XMCD) has been presented.  相似文献   

15.
We report on the growth of ultrathin epitaxial Co films on Fe(1 1 0) examined by scanning tunneling microscopy and spectroscopy (STM and STS). At room temperature Co forms pseudomorphic, ideally ordered body-centered cubic (bcc) layers for the first two monolayers as confirmed by atomically resolved STM images. This is in contrast to the related case of Co/Cr(1 1 0) where a superstructure occurs in the second layer. The third monolayer forms a close-packed structure and causes a transformation of the buried second monolayer into a close-packed structure. The Fe(1 1 0) substrate strongly influences the electronic structure of the first Co monolayer as concluded from the dI/dU spectra. This influence is less important for the second monolayer. The measured local density-of-states function for the bcc Co double layer is in agreement with theoretical predictions for bcc Co.  相似文献   

16.
Co(0 0 0 1)hcp/Fe(1 1 0)bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO3(1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0)bcc soft magnetic layer grew epitaxially on SrTiO3(1 1 1) substrate with two type variants, Nishiyama–Wasserman and Kurdjumov–Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1)hcp interlayer, while hcp-Co layer formed on Au(1 1 1)fcc or Ag(1 1 1)fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application.  相似文献   

17.
Electronic, magnetic and structural properties of atomic oxygen adsorbed in on-surface and subsurface sites at the two most densely packed iron surfaces are investigated using density functional theory combined with a thermodynamics formalism. Oxygen coverages varying from a quarter to two monolayers (MLs) are considered. At a 1/4 ML coverage, the most stable on-surface adsorption sites are the twofold long bridge sites on the (1 1 0), and the fourfold-hollow sites on the (1 0 0) surface. The presence of on-surface oxygen atoms enhances the magnetic moments of the atoms of the two topmost Fe layers. Detailed results on the surface magnetic properties, due to O incorporation, are presented as well. Subsurface adsorption is found unfavored. The most stable subsurface O, in tetrahedral positions at the (1 0 0) and octahedral ones at the (1 1 0) surface, are characterized by substantially lower binding than that in the on-surface sites. Subsurface oxygen increases the interplanar distance between the uppermost Fe layers. The preadsorbed oxygen overlayer enhances binding of subsurface O atoms, particularly for tetrahedral sites beneath the (1 1 0) surface.  相似文献   

18.
The effect of the crystalline quality of ultrathin Co films on perpendicular exchange bias (PEB) has been investigated using a Au/Co/Au/α-Cr2O3 thin film grown on a Ag-buffered Si(1 1 1) substrate. Our investigation is based on the effect of the Au spacer layer on the crystalline quality of the Co layer and the resultant changes in PEB. An α-Cr2O3(0 0 0 1)layer is fabricated by the thermal oxidization of a Cr(1 1 0) thin film. The structural properties of the α-Cr2O3(0 0 0 1) layer including the cross-sectional structure, lattice parameters, and valence state have been investigated. The fabricated α-Cr2O3(0 0 0 1) layer contains twin domains and has slightly smaller lattice parametersthan those of bulk-Cr2O3. The valence state of the Cr2O3(0 0 0 1) layer is similar to that of bulk Cr2O3. The ultrathin Co film directly grown on the α-Cr2O3(0 0 0 1) deposited by an e-beam evaporator is polycrystalline. The insertion of a Au spacer layer with a thickness below 0.5 nm improves the crystalline quality of Co, probably resulting in hcp-Co(0 0 0 1). Perpendicular magnetic anisotropy (PMA) appears below the Néel temperature of Cr2O3 for all the investigated films. Although the PMA appears independently of the crystallinequality of Co, PEB is affected by the crystalline quality of Co. For the polycrystalline Co film, PEB is low, however, a high PEB is observed for the Co films whose in-plane atom arrangement is identical to that of Cr3+ in Cr2O3(0 0 0 1). The results are qualitatively discussed on the basis of the direct exchange coupling between Cr and Co at the interface as the dominant coupling mechanism.  相似文献   

19.
T. Bernhard 《Surface science》2006,600(9):1877-1883
The structure and magnetism of thin epitaxial Fe layers grown on Cu(0 0 1) is investigated by grazing scattering of fast H and He atoms. Information on the atomic structure of the film and substrate surfaces is obtained by making use of ion beam triangulation with protons. The magnetic behavior is studied via the polarization of light emitted after capture of spin-polarized electrons into excited atomic terms during scattering of He atoms. For the formation of bcc(1 1 0)-like Fe films at higher coverages, we detect differences in structural and magnetic properties for room and low temperature growth. We suggest that the crystalline structure depends on the film morphology and that Cu impurities affect the magnetic properties.  相似文献   

20.
We report on experimental coercive field measurements for ultrathin films of Co on Cu{1 1 0}, revealing a complex dependence upon the surface coverage of oxygen and hydrogen adatoms. With reference to first-principles calculations, we rationalise this behaviour in terms of initial reaction with surface contaminants and/or adsorption at defects, followed by (in the case of oxygen) subsequent surface ordering and eventual formation of surface oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号