首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this study, we used the electrochemical anodization to prepare TiO2 nanotube arrays and applied them on the photoelectrode of dye-sensitized solar cells. In the field emission scanning electron microscopy analysis, the lengths of TiO2 nanotube arrays prepared by electrochemical anodization can be obtained with approximately 10 to 30 μm. After titanium tetrachloride (TiCl4) treatment, the walls of TiO2 nanotubes were coated with TiO2 nanoparticles. XRD patterns showed that the oxygen-annealed TiO2 nanotubes have a better anatase phase. The conversion efficiency with different lengths of TiO2 nanotube photoelectrodes is 3.21%, 4.35%, and 4.34% with 10, 20, and 30 μm, respectively. After TiCl4 treatment, the efficiency of TiO2 nanotube photoelectrode for dye-sensitized solar cell can be improved up to 6.58%. In the analysis of electrochemical impedance spectroscopy, the value of Rk (charge transfer resistance related to recombination of electrons) decreases from 26.1 to 17.4 Ω when TiO2 nanotubes were treated with TiCl4. These results indicate that TiO2 nanotubes treated with TiCl4 can increase the surface area of TiO2 nanotubes, resulting in the increase of dye adsorption and have great help for the increase of the conversion efficiency of DSSCs.  相似文献   

2.
A TiO2 organic sol was synthesised for the preparation of a compact TiO2 layer on fluorine-doped tin oxide (FTO) glass by a dip-coating technique. The resultant thin film was used for the fabrication of dye-sensitized solar cells (DSSCs). The compact layer typically has a thickness of ca. 110 nm as indicated by its SEM, and consists of anatase as confirmed by the XRD pattern. Compared with the traditional DSSCs without this compact layer, the solar energy-to-electricity conversion efficiency, short-circuit current and open-circuit potential of the DSSCs with the compact layer were improved by 33.3%, 20.3%, and 10.2%, respectively. This can be attributed to the merits brought by the compact layer. It can effectively improve adherence of TiO2 to FTO surface, provide a larger TiO2/FTO contact area, and reduce the electron recombination by blocking the direct contact between the redox electrolyte and the conductive FTO surface.  相似文献   

3.
Photoelectrodes of mixed microsized TiO2 aggregates and individually dispersed TiO2 nanocrystallites with different ratios were fabricated and studied for improved power conversion efficiency in dye-sensitized solar cells (DSCs). TiO2 aggregates/nanocrystallites composites possess several advantages for high performance of DSCs, including the light scattering by the microsized TiO2 aggregates and the high surface area of nanocrystallites both in aggregates and individually dispersed. A high power conversion efficiency of 7.59% was achieved with mixed TiO2 aggregates/nanocrystallites photoelectrode using conventional dye N3, without applying anti-reflection coating, back-scattering layer, or chemical treatment. The electron transport properties of DSCs with mixed photoelectrodes were investigated by electrochemical impedance spectra, and the results showed that such a photoelectrode with mixed aggregates and nanocrystallites possess better connectivity for efficient electron transport.  相似文献   

4.
TiO2 nanotube arrays are very attractive for dye-sensitized solar cells (DSSCs) owing to their superior charge percolation and slower charge recombination. Highly ordered, vertically aligned TiO2 nanotube arrays have been fabricated by a three-step anodization process. Although the use of a one-dimensional structure provides an enhanced photoelectrical performance, the smaller surface area reduces the adsorption of dye on the TiO2 surface. To overcome this problem, we investigated the effect of DSSCs constructed with a multilayer photoelectrode made of TiO2 nanoparticles and TiO2 nanotube arrays. We fabricated the novel multilayer photoelectrode via a layer-by-layer assembly process and thoroughly investigated the effect of various structures on the sample efficiency. The DSSC with a four-layer photoelectrode exhibited a maximum conversion efficiency of 7.22% because of effective electron transport and enhanced adsorption of dye on the TiO2 surface.  相似文献   

5.
In order to enhance the electron transport on the photoelectrodes of dye-sensitized solar cells, one-dimensional rutile nanorods were prepared using electrospun TiO2 nanofibers. The grain size of the nanorods increased with increasing temperature. Electrochemical impedance spectroscopy measurements revealed reduced interface resistance of the cells with the one-dimensional rutile nanorods due to the improved electron transport and the enhanced electrolyte penetration. Intensity-modulated photocurrent/photovoltage spectroscopy showed that the one-dimensional rutile nanorods provided the electrons with a moving pathway and suppressed the recombination of photogenerated electrons. However, an excessive quantity of rutile nanorods created an obstacle to the electrons moving in the TiO2 thin film. The photoelectrode with 7 wt.% rutile nanorods optimized the performance of the dye-sensitized solar cells.  相似文献   

6.
The engineered photoelectrodes have received significant attention in the photoelectrochemical (PEC) applications. Herein, we prepared a highly effective photoelectrode based on Cu2O decorated with ZnO and rGO for efficient PEC water splitting. Firstly, different thickness Cu2O is sputtered on the FTO substrate (FC). The PEC performance of the FC photoelectrode further improved by depositing the ZnO and rGO protection layers (FCZG). The fabricated photoelectrodes are systematically investigated for their morphological and crystal structure by AFM, FESEM, TEM, XPS, XRD, and RAMAN, UVDRS, and PL analysis. The FCZG hybrid photoelectrode exhibit a photocurrent density of 4.94 mA cm?2 at 0 V vs. reversible hydrogen electrode (RHE), which is 1.5 times higher than the unmodified photoelectrodes. The improved PEC performance of the FCZG hybrid photoelectrode is due to the high surface roughness, larger electrochemical active surface area, and less radiative recombination rate of the photogenerated charge carriers.  相似文献   

7.
A novel hierarchical Pt- and FTO-free counter electrode (CE) for the dye-sensitized solar cell (DSSC) was prepared by spin coating the mixture of TiO2 nanoparticles and poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) solution onto the glass substrate. Compared with traditional Pt/FTO CE, the cost of the new CE is dramatically reduced by the application of bilayer TiO2-PEDOT:PSS/PEDOT:PSS film and the glass substrate. The sheet resistance of this composite film is 35 Ω sq−1 and is low enough to be used as an electrode. The surface morphologies of TiO2-PEDOT:PSS layer and modified PEDOT:PSS layer were characterized by scanning electron microscope, which shows that the former had larger surface areas than the latter. Electrochemical impedance spectra and Tafel polarization curves prove that the catalytic activity of TiO2-PEDOT:PSS/PEDOT:PSS/glass CE is higher than that of PEDOT:PSS/FTO CE and is similar to Pt/FTO CE''s. This new fabricated device with TiO2-PEDOT:PSS/PEDOT:PSS/glass CE achieves a high power conversion efficiency (PCE) of 4.67%, reaching 91.39% of DSSC with Pt/FTO CE (5.11%).  相似文献   

8.
Nanostructural TiO2 films with large surface areas were prepared by the combined process of graft polymerization and sol–gel for use in dye-sensitized solar cells (DSSCs). The surface of the TiO2 nanoparticles was first graft polymerized with photodegradable poly(methyl methacrylate) (PMMA) via atom transfer radical polymerization (ATRP), after which the particles were deposited onto a conducting glass. The PMMA chains were removed from the TiO2 films by UV irradiation to generate secondary pores, into which titanium isopropoxide (TTIP) was infiltrated. The TTIP was then converted into small TiO2 particles by calcination at 450 °C, as characterized by energy-filtering transmission electron microscopy (EF-TEM) and field emission scanning electron microscopy (FE-SEM). The nanostructural TiO2 films were used as a photoelectrode in solid-state DSSCs; the energy conversion efficiency was 5.1% at 100 mW/cm2, which was higher than the values achieved by the pristine TiO2 (3.8%) and nongrafted TiO2/TTIP photoelectrodes (3.3%). This performance enhancement is primarily due to the increased surface area and pore volume of TiO2 films, as revealed by the N2 adsorption–desorption isotherm.  相似文献   

9.
Modifications of the working electrode with TiO2 blocking or coating layers are carried by electrodeposition in TiCl3 precursor solution. The results suggest that the electrodeposited TiO2 blocking layer provides excellent agglutination between the FTO substrate and the active TiO2 layer. In addition, the electrodeposited TiO2 coating layer enhances the interconnections between the TiO2 nanoparticles and the FTO substrate, and therefore it increases the electron transport efficiency. The morphology and crystalline structure of the electrodeposited TiO2 layers are characterized by SEM, TEM, and XRD. The electrochemical impedance spectroscopy measurements show that the improved DSSC performance with the electrodeposited coating layer is mainly due to the increase in the lifetime of the conduction band electron in the TiO2 film. The photoelectron conversion efficiency of DSSC is increased from 3.47% to 5.38% by employing the TiO2 electrodeposited working electrode.  相似文献   

10.
Zhu G  Su F  Lv T  Pan L  Sun Z 《Nanoscale research letters》2010,5(11):1749-1754
Quantum dot-sensitized solar cells based on fluorine-doped tin oxide (FTO)/Au/TiO2/CdS photoanode and polysulfide electrolyte are fabricated. Au nanoparticles (NPs) as interfacial layer between FTO and TiO2 layer are dip-coated on FTO surface. The structure, morphology and impedance of the photoanodes and the photovoltaic performance of the cells are investigated. A power conversion efficiency of 1.62% has been obtained for FTO/Au/TiO2/CdS cell, which is about 88% higher than that for FTO/TiO2/CdS cell (0.86%). The easier transport of excited electron and the suppression of charge recombination in the photoanode due to the introduction of Au NP layer should be responsible for the performance enhancement of the cell.  相似文献   

11.
Herein, an improved structure of the dye‐sensitized solar cell (DSSC) is demonstrated which is composed of surface modified fluorine‐doped tin oxide (FTO) glass with graphene (GR) sheets and TiO2 films incorporated with three‐dimensional crumped graphene (3‐D CGR)/GR sheets. The morphologies of the as‐prepared GR sheets on FTO glasses and 3‐D CGR/GR sheets/TiO2 films were observed by field‐emission scanning electron microscopy. Light harvesting and charge recombination kinetics were investigated with a solar simulator and electrochemical impedance spectroscopy analysis. In addition to the reduced charge resistance by the GR modified FTO, the enhanced dye loading capability of the 3‐D CGR, and the rapid charge transport by the 2‐D GR sheets, the power conversion efficiency was 7.2%, which was an increase of 56% compared to a “conventional” structured DSSC. © 2015 American Institute of Chemical Engineers AIChE J, 62: 574–579, 2016  相似文献   

12.
We suggest a simple process to fabricate a hole-patterned TiO2 electrode for a solid-state dye-sensitized solar cell (DSSC) to enhance cell performance through interfacial properties of the electrode with the electrolyte with minimum dye loading. The method involves prepatterning of SU-8 photoresist on a conducting glass, followed by the deposition of a nanocrystalline TiO2 layer, calcination at 450 °C and characterization using scanning electron microscopy (SEM). Hole-patterned TiO2 photoelectrodes yielded better solar energy conversion efficiency per dye loading compared to a conventional non-patterned photoelectrode. For example, a 50 μm hole-patterned DSSC exhibited 4.50% conversion efficiency in the solid state, which is comparable to an unpatterned flat TiO2 photoelectrode (4.57%) however the efficiency per dye loading of the former (0.986%/g) was much greater than that of the latter (0.898%/g). The improvement was attributed to improved transmittance through the electrode as well as better interfacial properties between the electrolyte and electrode, as confirmed by UV-visible spectroscopy and electrochemical impedance (EIS) analysis.  相似文献   

13.
In this study, hybrid silica-conjugated TiO2 photoelectrodes were developed in order to enhance the efficiency of a dye-sensitized solar cell. The relative changes in surface crystallite size and chemical surface states of TiO2 composites were investigated by XRD, XPS, and UV-vis spectroscopy. Therein, the chemical compositions of the nanostructured photoelectrode surfaces were observed to significantly change when the glass powder Si atoms became chemically bonded with the Ti atoms on the photoelectrode surface without appreciable changes to the crystalline structure of TiO2. Furthermore, a significant conversion of Si-Ox into Si-O at the surface of the photoelectrode was observed following the addition of glass powder, which confirms the covalent bonding of Si and Ti atoms into Ti-O-Si. A maximum cell efficiency (η from 5.8% to 8.5%) was observed when 2 wt% of the low-temperature glass powder was added to the TiO2 with a constant amount of dye loading. This observed peak in solar cell efficiently is most likely due to an increase in light harvesting, which is a result of an enhancement of light scattering and the coordination between Ti and Si to establish a Ti-O-Si bond.  相似文献   

14.
A TiO2 blocking layer in DSSC provides good adhesion between the fluorinated tin oxide (FTO) and an active TiO2 layer, and represses the electron back transport between electrolyte and FTO by blocking direct contact. In addition, it offers a more uniform layer than bare FTO glass. In this study, a dense TiO2 layer is prepared by electrodeposition technique onto an FTO substrate, and it is further used for efficiency measurement of dye-sensitized solar cell (DSSC). The thickness of TiO2 blocking layers is controlled by applied voltage and deposition time. The morphology and crystalline structure of TiO2 blocking layers are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The effect of thickness of TiO2 blocking layers on transmittance is also examined by UV-vis spectrophotometer. For the best performance of the cell efficiency, the optimum blocking layer thickness is about 450 nm fabricated at 0.7 V for 20 min. The conversion efficiency from the DSSC including the optimum blocking layer is 59.34% improved compared to the reference cell from 2.41% to 3.84%. It demonstrates that the electrodeposition is a useful method to produce TiO2 blocking layer for DSSC applications.  相似文献   

15.
Double layer photoelectrodes consisting of the TiO2 nanoparticles (npTiO2) with 30–40 nm in diameter and the TiO2 nanospheres (nsTiO2) with 100–200 nm as a bottom and a top layer, respectively, were fabricated for dye-sensitized solar cells (DSSCs) employing a polymer electrolyte. The nsTiO2 with hierarchical pores were prepared via the combined process of atom transfer radical polymerization (ATRP) and a sol–gel. Use of nsTiO2 resulted in the remarkable enhancement of cell performance due to light scattering and dye adsorption capability. The overall energy conversion efficiency (η) of 5.5% was achieved by the formation of npTiO2–nsTiO2 double layer photoelectrode, which was higher than those formed by npTiO2 alone (4.6%) or nsTiO2–nsTiO2 double layer (4.4%). Electrochemical impedance spectra (EIS) analysis showed that the npTiO2–nsTiO2 double layer had lower electron transfer resistance and longer electron lifetime, leading to facilitation of reduced recombination and consequently improvement of cell performance.  相似文献   

16.
In order to possess the merits of both building blocks, i.e. the rapid interfacial electron transport of TiO2-B narrow nanobelts (NBs) and the high surface area of TiO2 nanoparticles (NPs), the TiO2-B NBs and TiO2 NPs composites photoelectrodes were prepared with different weight ratios. The dye-sensitized solar cell prototypes were fabricated based on the composite photoelectrodes and the photoelectrical properties have been systematically studied. Although the amount of adsorption dye of composite solar cells decreased, the composite cells could obtain higher power conversion efficiency compared to pure TiO2 NP solar cell by rational tuning the weight ratio of TiO2-B NBs and TiO2 NPs, which was due to the faster electron transfer rate. The dye adsorption amount and interfacial electron transport, which together determined the overall photoelectrical conversion efficiency, were investigated by the UV–vis spectra, the electrochemical impedance spectra (EIS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS).  相似文献   

17.
《Ceramics International》2022,48(5):6037-6045
Amine-functionalized ZnO nanorods@graphene oxide (ZnO-NR/NH2/GO) nanocomposites prepared by a facile solution route have been investigated through X-ray diffraction, diffuse reflectance spectra, Raman spectra, scanning electron microscopy and transmission electron microscopy. The amine-functionalized ZnO-NR/NH2/GO-2 nanocomposite exhibits very strong visible light absorption. Dye-sensitized solar cell (DSSC) made of ZnO-NR/NH2/GO-2 nanocomposite (with optimum 2 wt % GO) photoanode delivers a power conversion efficiency (PCE) of 3.76% which is much higher than the efficiency of unmodified ZnO-NR/GO photoanodes based DSSC (2.27%). The enhancement of PCE is primarily caused by the increased current density, attributed to the incorporation of aminosilicate and GO on the surface of ZnO-NRs which facilitates rapid transfer of electron from conduction band of ZnO to conducting surface of FTO. This diminished recombination of photogenerated electrons and holes improve the electron transfer at the photoanode/electrolyte interfaces.  相似文献   

18.
We prepare photoelectrodes with mixed metal oxides (TiO2-RuO2), polypyrrole (PPy) and N-doped reduced graphene oxide (NrGO) on titanium (Ti) substrate for overall water splitting and methylene blue degradation during two steps; including a sol–gel deposition of mixed metal oxide (MMO) and electrodeposition of PPy or PPy-NrGO films. The as-prepared photoelectrodes are characterized by physical and photoelectrochemical measurements. Ti/MMO/PPy-NrGO photoelectrode exhibit a considerably photocurrent density of −6.97 mA cm−2 (at 0 V vs. reversible hydrogen electrode [RHE]) and 12.89 mA cm−2 (at 1.23 V vs. RHE) for hydrogen and oxygen generations, respectively. However, promotion in the H+/H2 efficiency (40.25%) is about 28 orders of magnitude while in the case of H2O/O2 (13.77%) is 10 times. The electrochemical impedance spectroscopy and Mott–Schottky measurements reveal that the simultaneous incorporation of MMO and NrGO nanosheets in PPy coating leads to the lowest charge transfer resistance at the photoelectrode/electrolyte interface and an improvement in charge carrier density.  相似文献   

19.
Due to the complexity of dye-sensitized solar cell modules, the conversion efficiency increased slightly over the years of development. The TiO2 photoelectrode, as core part in the module, plays an important role in the overall performance. Here, we conducted series of associative experiments on modification of the TiO2 photoelectrode to achieve a better performance. The paste was prepared using conventional P-25 powder, and the conversion efficiency was found to be increased from the initial 1.41% to 2.48% by optimizing paste additives. Further, a merchandised paste with smaller particle size was introduced to fabricate a double-layer cell with the P-25 paste, followed by a surface treatment with TiCl4. The final result was observed to be quite satisfactory with a sharp increase in the conversion efficiency of 6.51%.  相似文献   

20.
Nano-branched rutile TiO2 nanorod arrays were grown on F:SnO2 conductive glass (FTO) by a facile, two-step wet chemical synthesis process at low temperature. The length of the nanobranches was tailored by controlling the growth time, after which CdS quantum dots were deposited on the nano-branched TiO2 arrays using the successive ionic layer adsorption and reaction method to make a photoanode for quantum dot-sensitized solar cells (QDSCs). The photovoltaic properties of the CdS-sensitized nano-branched TiO2 solar cells were studied systematically. A short-circuit current intensity of approximately 7 mA/cm2 and a light-to-electricity conversion efficiency of 0.95% were recorded for cells based on optimized nano-branched TiO2 arrays, indicating an increase of 138% compared to those based on unbranched TiO2 nanorod arrays. The improved performance is attributed to a markedly enlarged surface area provided by the nanobranches and better electron conductivity in the one-dimensional, well-aligned TiO2 nanorod trunks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号