首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cavity formation was quantified in a grade of siliconized silicon carbide containing 33 vol% silicon. The type, size, and density of cavities were determined for smooth-bar specimens tested in both tension and bending, and for indented specimens tested in tension. In both tension and bending, the volume fraction of cavities was found to be proportional to the tensile creep strain. Cavities nucleated at random locations throughout the test specimen, eventually coalescing into cracks that were the source of failure at high temperatures. In tension, the strain to failure was about 1%. In flexure, stress relaxation at the tensile surface of test specimens helped stabilize cracks that formed during creep. As a consequence, strains to failure were about twice as large in bending as in tension. In tensile specimens containing large, >300 μm, indentation cracks, cavitation was profuse near the crack tips. At a volume fraction of about 3%, cavities coalesced to form secondary cracks near the tip of the indentation crack. Cracks advanced by linkage of cavitation cracks with the indentation crack. Crack growth was intermittent, requiring the buildup of cavities in front of the crack tip before crack advance could occur. If the indentation crack length was less than about 200 μm, cavity formation at the tip of the crack was not sufficient for crack advance. In such case, failure would have to occur by cavity coalescence and crack formation at some other location in the test specimen.  相似文献   

2.
Cavitation Contributes Substantially to Tensile Creep in Silicon Nitride   总被引:2,自引:0,他引:2  
During tensile creep of a hot isostatically pressed (HIPed) silicon nitride, the volume fraction of cavities increases linearly with strain; these cavities produce nearly all of the measured strain. In contrast, compressive creep in the same stress and temperature range produces very little cavitation. A stress exponent that increases with stress (ε∞σ n , 2 < n < 7) characterizes the tensile creep response, while the compressive creep response exhibits a stress dependence of unity. Furthermore, under the same stress and temperature, the material creeps nearly 100 times faster in tension than in compression. Transmission electron microscopy (TEM) indicates that the cavities formed during tensile creep occur in pockets of residual crystalline silicate phase located at silicon nitride multigrain junctions. Small-angle X-ray scattering (SAXS) from crept material quantifies the size distribution of cavities observed in TEM and demonstrates that cavity addition, rather than cavity growth, dominates the cavitation process. These observations are in accord with a model for creep based on the deformation of granular materials in which the microstructure must dilate for individual grains to slide past one another. During tensile creep the silicon nitride grains remain rigid; cavitation in the multigrain junctions allows the silicate to flow from cavities to surrounding silicate pockets, allowing the dilatation of the microstructure and deformation of the material. Silicon nitride grain boundary sliding accommodates this expansion and leads to extension of the specimen. In compression, where cavitation is suppressed, deformation occurs by solution—reprecipitation of silicon nitride.  相似文献   

3.
Diffusional creep and cavitation in pure alumina prepared with three different fabrication processes are compared under tension and subsequent hydrostatic compression. The deformation rates are separated into a volume-conserving creep rate and cavitational rate by measuring the longitudinal and transverse strains intermittently during deformation. Concurrent grain growth causes the volume-conserving strain rate to decrease in a manner consistent with Nabarro-Herring creep. The creep stress index of n = 1.3 and the average activation energy of Q = 480 kJ/mol are also consistent with Nabarro-Herring creep controlled by aluminum lattice diffusion. Anelastic loading and unloading transients are also identified and separated from the creep strains. High-voltage electron microscopy indicates that cavities nucleate at grain edges early and continuously in the creep process. The surfaces of these cavities tend after some growth to exhibit negligible curvature and various dihedral angles. The activation energy of Q = 450 kJ/mol and stress dependence of the cavitation rate of n = 1.3 are consistent with a grain boundary diffusional growth mechanism. The loading mode is found to have no significant effect on the cavitation rate during tensile creep and the subsequent decavitation rate during hydrostatic compression. The cavitation and decavitation rates are in good agreement with the model proposed by Speight and Beere when the effects of grain growth on cavity accumulation on grain boundaries are included. Exaggerated grain growth in high-density specimens can lead to early cavity coalescence and failure.  相似文献   

4.
Detailed microscopy of two crept aluminas, one with (AD99) and one without (Lucalox) a grain boundary glassy phase, has been performed to determine the pertinent damage mechanisms during creep. Evidence is presented for a nucleation-controlled cavitation process where creep cavities nucleate primarily on two-grain facets, followed by cavity growth and coalescence to form grain-facet-sized cavities and microcracks. A variety of creep cavity morphologies were observed in Lucalox, including spheroidal and irregularly shaped cavities. The latter finding implies a strong influence of crystallographic orientation and the corresponding surface energy of the cavitated planes on the cavity shape. In contrast, classical spheroidal cavities were observed in AD99 due to the presence of a viscous phase along grain boundaries. Direct evidence for grain boundary sliding as the process driving force for cavitation in Lucalox is presented together with evidence for the nucleation of creep cavities at grain boundary ledges. These findings are compared to the grain boundary sliding (GBS) and small-angle neutron scattering (SANS) measurements performed previously on the same systems. Based on this study, the cavity nucleation process in the glassy-phase- and non-glassy-phase-containing aluminas is apparently similar as both involve the nucleation of rows of equally sized and equally spaced cavities.  相似文献   

5.
Crack growth behavior under creep conditions was studied in SiC-whisker-reinforced mullite and silicon nitride. Tests of four-point bend specimens with indentation cracks were periodically interrupted to observe the creep behavior. At each interruption the bulk creep strain of the specimen, the growth of the indentation cracks, and the nucleation and growth of creep-induced cracks were measured. A strong linear correlation was observed in both materials between the crack growth rate and the creep strain rate. For a given strain rate, cracks in the silicon nitride composite propagated at velocities about an order of magnitude greater than those in the mullite composite. On the other hand, for similar nominal stresses, creep rates in the silicon nitride composites were about an order of magnitude less than with the mullite composite.  相似文献   

6.
The strength of a commericially available hot isostatically pressed silicon nitride was measured as a function of temperature. To evaluate long-term mechanical reliability of this material, the tensile creep and fatigue behavior was measured at 1150°, 1260°, and 1370°C. The stress and temperature sensitivities of the secondary (or minimum) creep strain rate were used to estimate the stress exponent and activation energy associated with the dominant creep mechanism. The fatigue characteristics were evaluated by allowing individual creep tests to continue until specimen failure. The applicability of the four-point load geometry to the study of strength and creep behavior was also determined by conducting a limited number of flexural creep tests. The tensile fatigue data revealed two distinct failure mechanisms. At 1150°C, failure was controlled by a slow crack growth mechanism. At 1260° and 1370°C, the accumulation of creep damage in the form of grain boundary cavities and cracks dominated the fatigue behavior. In this temperature regime, the fatigue life was controlled by the secondary (or minimum) creep strain rate in accordance with the Monkman–Grant relation.  相似文献   

7.
The grain boundary sliding (GBS) behavior of a single-phase (relatively coarse-grained) alumina material was studied after tensile creep experiments were performed at 1500°C at stress levels of 20 and 35 MPa. Specimens tested at 35 MPa exhibited a number of modes of GBS, including Mode II (shear) displacements, Mode I (opening) displacements, out-of-plane sliding displacements, and in-plane grain rotation. Strains in the grain boundaries due to Mode II GBS ranged from 940% to 4400%. Average Mode II GBS displacements ranged from 0.08 to 0.29 µm in samples tested for 120 and 480 min, respectively, at 35 MPa. The GBS displacements were shown to fit a Weibull distribution. Tensile creep under a 35 MPa stress yielded a GBS rate of 9.5 10-6µm/s, while the 20 MPa stress resulted in a GBS rate of 2.2 10-6µm/s. The average Mode II GBS displacements increased linearly with specimen strain, suggesting that GBS may play an important role in creep cavitation during tensile creep. The data also revealed that compatibility and constraint rules appear to govern GBS behavior during tensile creep. GBS behavior during compressive creep will be compared to the tensile creep GBS measurements presented.  相似文献   

8.
Measurements of the tensile creep and creep rupture behavior were used to evaluate the long-term mechanical reliability of a commercially available and a developmental hot isostatically pressed (HIPed) silicon nitride. Measurements were conducted at 1260° and 1370°C utilizing button–head tensile specimens. The stress and temperature sensitivities of the secondary creep rates were used to estimate the stress exponent and activation energy associated with the dominant creep mechanism. The stress and temperature dependencies of creep rupture life were determined by continuing individual creep tests to specimen failure. Creep deformation in both materials was associated with cavitation at multigrain junctions. Two-grain cavitation was also observed in the commercial material. Failure in both materials resulted from the evolution of an extensive damage zone. The failure times were uniquely related to the creep rates, suggesting that the zone growth was constrained by the bulk creep response. The fact that the creep and creep rupture behaviors of the developmental silicon nitride were significantly improved compared to those of the commercial material was attributed to the absence of cavitation along two-grain junctions in the developmental material.  相似文献   

9.
The early stages of cavitation during compressive creep of a liquid-phase-sintered alumina have been characterized using small-angle neutron scattering. Grain-boundary cavities were found to nucleate throughout creep, although at a steadily decreasing rate. The cavities were located on two-grain junctions as well as triple points and were spaced approximately 100 to 200 nm apart. The cavity spacing corresponded to the spacings observed for grain-boundary ledges, suggesting that the ledges were the cavity nucleation sites. Cavity nucleation was also found to be relatively independent of the applied stress. This behavior has been rationalized based on the decreasing ratio of ɛgbst, where ɛgbs is the strain due to grain-boundary sliding and ɛt is the total strain, at increasing stresses. Cavity growth, on the other hand, was highly stress dependent. Above a certain "threshold" stress cavity growth was observed. In all cases, however, the observed growth was transient; i.e., the cavity growth rate decreased with time. Lowering the stress below the "threshold" resulted in a condition in which cavities nucleated but continued growth of the cavities did not occur. In all cases the cavities nucleated and grew, when growth did occur, with relatively equiaxed shapes.  相似文献   

10.
The growth threshold, K th, of large creep cracks in a glass-ceramic has been investigated to determine the causes of the arrest and nonpropagating behaviors below a characteristic stress intensity, K , value. Using replication techniques, the dominant creep demage mechanisms during creep-crack growth, which included grain-boundary cavity and microcrack formation, were identified as a function of K levels and crack extension rates. Quantitative measurements of cavity density, D ( r ), and microcrack density, Ψ( r ), revealed that the values of D ( r ) and Ψ( r ) both decrease with the K level and with increasing distance, r , from the crack tip at a given K level. At K values below K th, the cavity density became zero as preexisting grain-boundary cavities were sintered, suggesting that the growth threshold originated from sintering of creep cavities. At K levels above K th, microcracks located in the wake of the main crack were observed to be sintered also. Possible mechanisms responsible for the apparent self-healing of microcracks and creep cavities in the glass-ceramic are provided, together with theoretical and experimental support.  相似文献   

11.
The formation of cavities during creep increases the creep rate as a result of the combined effects of the decrease in elastic modulus, which results in elastic creep, and the enhanced rate of the basic creep process caused by stress transfer. Analyses of these effects are presented for the special case of cavities in the form of cracks. The net rate of creep can be described by a total of four terms. Permanent crack-opening displacement resulting from creep deformation of material adjacent to the cracks results in a permanent pore phase following unloading.  相似文献   

12.
Analysis of the role of cavitation during uniaxial creep deformation in vitreous bonded ceramics reveals that the cavity volume contributes only to the strain in the direction parallel to the tensile stress regardless of the shape and orientation of cavities. Creep asymmetry results from the fact that cavitation preferentially contributes to axial tensile strain while the strain observed under the same conditions in compression is produced only by volume-conserving mechanisms. The contribution of cavitational strain in the axial tensile strain is equal to the volume fraction of cavities and proportional to the difference between tensile and compressive strains in the axial direction. The density change method and a newly proposed method based on the difference in the axial strains were used for separating the cavitational from the true tensile strain in self-reinforced silicon nitride. Both methods consistently revealed more than 90% contribution of cavitation to the total tensile strain. Cavitation is concluded to be the dominant mechanism of tensile creep deformation in vitreous bonded ceramics because the reported volume fractions of cavities during their deformation are usually in the range of 70–90% of tensile strain.  相似文献   

13.
The growth rate, near-tip creep response, and damage processes of creep cracks in a pyroceram glass-ceramic were studied under tensile loading at elevated temperatures. The rates of crack extension were characterized as a function of the applied stress intensity factor. The damage processes which occurred near the crack tip and led to creep crack extension were identified using a replica technique and by direct observations in a scanning electron microscope equipped with a high-temperature loading stage. The accumulated creep strains near the crack tip were measured via the stereoimaging technique. The results indicate that creep-crack growth in the pyroceram glass-ceramic occurs in both continuous and discontinuous manners, with the damage processes manifested as the nucleation, growth, and coalescence of inhomogeneously distributed cavities and microcracks. Measurements of the total accumulated creep strain near the crack tip suggest that crack extension follows a critical strain criterion. Both the microcrack density and the total accumulated creep strain show similar dependence with distance from the crack tip. These observations suggest that damage accumulation and crack extension in the glass-ceramic are controlled by the near-tip creep rates.  相似文献   

14.
A study of the flexural creep response of aluminas reinforced with 10 vol% SiC whiskers was conducted at 1200° and 1300°C at stresses from 50 to 230 MPa in air to evaluate the effect of matrix grain size. The average matrix grain size was varied from 1.2 to 8.0 μm by controlling the hot-pressing conditions. At 1200°C, the creep resistance of alumina composites increases with an increase in matrix grain size, and the creep rate (at constant applied stress) exhibits a grain size exponent of approximately 1. The stress exponent of the creep rate at 1200°C is approximately 2, consistent with a grain boundary sliding mechanism. On the other hand, the creep deformation rate of 1300°C was not sensitive to the alumina grain size. This was seen to be a result of enhanced nucleation and coalescence of creep cavities and the development of macroscopic cracks as the grain size increases. Observations also indicated that the prevalent site for nucleation and growth of creep cavities in coarsegrained materials is at two-grain junctions (grain faces), whereas in fine-grained materials cavities nucleate primarily at triple-grain junctions (grain edges). Electron microscopy studies revealed that the content of any amorphous phase present at whisker-alumina interfaces is independent of alumina grain size (and hot-pressing conditions). In addition, the alumina grain boundaries are quite devoid of amorphous phase(s). This variation in amorphous phase content does not appear to be a factor in the present creep results.  相似文献   

15.
Cavitation erosion resistance of 8 wt.% yttria stabilized zirconia has been investigated in specimens prepared by atmospheric plasma spraying and laser remelting post treatment. The results indicate that as-sprayed coatings involve defects such as primary cavities and initial micro cracks inside a particle and among the interfaces of particles. When the specimens are subjected to cavitation erosion, the micro cracks initiate and coalesce along with chip removals. Laser remelting produces a dense glazed layer with some cracks though the coatings. With the increasing of erosion time, large pieces are delaminated from coating-substrate interface leading to a significant mass loss. However, the resistance of laser remelted coatings to cavitation erosion is significantly improved when they are impregnated with epoxy by vacuum castable mounting. The relationship between cracks formed inside the laser remelted YSZ coatings and their damage mechanism under cavitation is discussed.  相似文献   

16.
The creep behavior of a commercial grade of Si3N4 was studied at 1350° and 1400°C. Stresses ranged from 10 to 200 MPa in tension and from 30 to 300 MPa in compression. In tension, the creep rate increased linearly with stress at low stresses and exponentially at high stresses. By contrast, the creep rate in compression increased linearly with stress over the entire stress range. Although compressive and tensile data exhibited an Arrhenius dependence on temperature, the activation energies for creep in tension, 715.3 ± 22.9 kJ/mol, and compression, 489.2 ± 62.0 kJ/mol, were not the same. These differences in creep behavior suggests that mechanisms of creep in tension and compression are different. Creep in tension is controlled by the formation of cavities. The cavity volume fraction increased linearly with increased tensile creep strain with a slope of unity. A cavitation model of creep, developed for materials that contain a triple-junction network of second phase, rationalizes the observed creep behavior at high and low stresses. In compression, cavitation plays a less important role in the creep process. The volume fraction of cavities in compression was ∼18% of that in tension at 1.8% axial strain and approached zero at strains <1%. The linear dependence of creep rate on applied stress is consistent with a model for compressive creep involving solution–precipitation of Si3N4. Although the tensile and compressive creep rates overlapped at the lowest stresses, cavity volume fraction measurements showed that solution–precipitation creep of Si3N4 did not contribute substantially to the tensile creep rate. Instead, cavitation creep dominated at high and low stresses.  相似文献   

17.
Cylindrical buttuohead specimens of an advanced silicon nitride were tested in uniaxial tension at temperatures between 1422 and 1673 K. In the range 1477 to 1673 K, creep deformation was reliably measured using high-temperature contact probe extensometry. Extensive scanning and transmission electron microscopy has revealed the formation of lenticular cavities at two-grain junctions at all temperatures (1422–1673 K) and extensive triple-junction cavitation occurring at the higher temperatures (1644–1673 K). Cavitation is believed to be part of the net creep process. The stress rupture data show stratification of the Monkman–Grant lines with respect to temperature. Failure strain increased with increase in rupture time or temperature, or decrease in stress. Fractography showed that final failure occurred by subcritical crack growth in all specimens.  相似文献   

18.
Continuum mechanics methods were employed to analyze creep deformation of a grade of siliconized silicon carbide at elevated temperatures. Three loading modes (tension, compression, and bending) are considered in this analysis. In tension, deformation is accompanied by cavitation at stresses in excess of a temperature-dependent threshold level, resulting in bilinear power-law creep. In compression, greater applied stresses are required to achieve the same rate of strain, and although bilinear creep behavior is also observed, a single power-law creep equation was assumed to simplify the mathematical analysis of the flexure problem. Asymmetrical creep in siliconized silicon carbide leads to a number of unique features in flexural creep. At steady state, a threshold bending moment exists below which no damage occurs. The neutral axis shifts from the geometric center toward the compressive side of the specimen by an amount that depends on the level of applied stress. Cavitation zone shapes, which are predicted to develop in a four-point bend specimen as a function of load, are found to be in qualitative agreement with those obtained experimentally. For transient creep under bending, the time-dependent neutral axes for stress and strain do not coincide, although they do converge toward a single axis at steady state. Quantitative predictions are given for relaxation of tensile stresses at the outer fiber, reverse loading in the midplane region, and the growth of the damage zone toward the compressive side of the flexural specimen. This load redistribution leads to a prolonged transient stage as compared to its counterpart in uniaxial creep.  相似文献   

19.
A New Model for Tensile Creep of Silicon Nitride   总被引:2,自引:0,他引:2  
The tensile creep rate of most commercial grades of Si3N4 increases strongly with stress. Although the usual power-law functions can represent the creep data, the data often show curvature and systematic variations of slope with temperature and stress. In this article, we present a new approach to understanding the creep of ceramics, such as Si3N4, where a deformable second phase bonds a deformation-resistant major phase. A review of experimental data suggests that the rate of formation and growth of cavities in the second phase controls creep in these materials. The critical step for deformation is the redistribution of the second phase away from the cavitation site to the surrounding volume. The effective viscosity of the second phase and the density of active cavities determine the creep rate. Assuming that the hydrostatic stresses in pockets of the second phase are normally distributed leads to a model that accurately describes the tensile creep rate of grades of Si3N4. In this model, the creep rate increases exponentially with the applied stress, is independent of Si3N4 grain size, is inversely proportional to the effective viscosity of the deformable phase, and is proportional to the cube of the volume fraction of the deformable phase.  相似文献   

20.
Conclusions High-temperature creep of magnesia materials after the attainment of a certain critical deformation value is accompanied by the development of microscopic cracks. With the development of deformation there occurs a merging of the cracks into a mainline system and macroscopic destruction of the specimen close to brittle.Creep in this region of deformation is controlled by the localization of the rigid elements of the framework of the structure under conditions of rupture in the material's continuity. The critical values of deformation, moving the specimen from the zone of densification into the zone of destruction, should be taken as the limits in predicting creep.Translated from Ogneupory, No. 6, pp. 4–8, June, 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号