首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The system Nd2O3–Y2O3 contains solid-solution phases with several different structures. Single-phase B-type (Nd1−xYx)2O3 solid solutions in the range of 0.2x0.5 $0.2 \le x \le 0.5$ were formed at 1873 K and retained on cooling to ambient temperature. They showed a linear composition dependence of lattice parameters, enabling extrapolation to x = 0 and 1 for comparison with the structures of the stable endmembers. A positive enthalpy of formation from A-type Nd2O3 and C-type Y2O3 determined using oxide melt solution calorimetry indicated entropic stabilization of the B-type phase. A positive interaction parameter for mixing in the B-type solid solution, Ω = $ = $ 47.46 ± 4.04 kJ/mol, was obtained by fitting the data using a regular solution model. This value is significantly more positive than that obtained by previous phase diagram analysis using the CalPhaD approach. Exsolution into two B-type phases is predicted to occur below 1427 K, making it unimportant for the equilibrium phase relations that will be dominated by other structures at low temperature.  相似文献   

2.
《Ceramics International》2023,49(1):253-263
A modified solid-state method was used to synthesize new SmRETi2O7 pyrochlores. The new samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy dispersive x-ray (EDX), Fourier transform infrared (FT-IR) and Raman spectroscopy. Qualitative and quantitative analyses were done by MAUD software to obtain crystallographic parameters. Based on the results, the crystal system of the new SmRETi2O7 pyrochlores was cubic with Fd3m space group. A slight shift in the Bragg positions was observed which was related to the cationic radii of the rare earth cations. The correlation between the structural parameters and the crystallographic data was also done. Besides, the electrochemical hydrogen storage (EHS) capacity of these pyrochlores were investigated. The holmium-containing oxide structure (SmHoTi2O7) compared to other samples exhibited a higher discharge capacity, about 1340 mAh/g. The results of EHS studies well correlated with the crystallographic data.  相似文献   

3.
This article describes investigations on the phase development (T ≤ 1500℃) of phosphate-bonded Al2O3-MgAl2O4 high-temperature ceramics by a combination of solid-state MAS NMR and X-ray diffraction analyses. The ceramic body was bonded with inorganic hydrogen orthophosphates (Al, Mg, Ca, Zr) with a total binder content of 3 wt.% P2O5. The binding mechanisms of these phosphate-bonded ceramics could be extensively deduced by analyses of phase developments during hardening, strength development, and high-temperature phase formation at T ≤ 1500℃: The formation of a network of aluminum phosphate compounds by acid and condensation reactions of the phosphate with the ceramic body is proven to be the active binding process. The binding process is initiated by the formation of active phosphoric acid phosphate phases, which in principle prerequisites water solubility of the binder. Thermal treatment, especially at T ≤ 600℃, promotes the degree of P-cross-linking of the phosphate structures. In addition to these phosphate-ceramic reactions, it was also possible to identify parallel pure phosphate–phosphate conversions of the initial phosphates (via condensation and polymerization) without reactions with ceramic components. The contribution of these structures to the binding effect can be estimated to be minor. Only at temperatures of T ≥ 600℃, these Ca, Mg and Zr phosphates begin to react with the ceramic material to form aluminum phosphates. The phosphate bond has a permanent effect until the formation of the ceramic bond (T > 1000℃). High-temperature phases are usually crystalline PO4-sintered structures which are formed by reaction with MgAl2O4.  相似文献   

4.
《Ceramics International》2022,48(10):13651-13658
Two new RESmTi2O7 mixed metal oxides were prepared by mixing Sm2O3, RE2O3 (RE = Gd, Er) and TiO2 using a modified solid state method which gives the target pyrochlores with excellent phase purity. SmGdTi2O7 and SmErTi2O7 samples were characterized using PXRD, SEM, EDS, FT-IR and Raman spectroscopy. Rietveld refinement was employed to obtain crystallographic parameters using MAUD software. The qualitative phase analysis showed that the mixed metal oxides were crystallized in a cubic crystal system with the Fd3m space group with small shifting in Bragg positions due to the effect of RE cationic radius on the lattice structure. The quantitative phase analysis using Rietveld refinement method illustrated the relation between crystallographic parameters, structural factors and ionic radii of RE atoms, during which, the sensitivity of the pyrochlores for cationic radius variations of RE atoms, and the extraordinary effect of the RE on the crystal structure of pyrochlores were confirmed.  相似文献   

5.
《Ceramics International》2020,46(10):16126-16134
We prepared pure-phase NixMn1-xCo2O4 (x = 0, 0.25, 0.5, 0.75 and 1) nanoparticles using a low-temperature solid-state reaction method. Magnetization measurement results showed that with Ni doping, the Curie temperature and coercivity of NixMn1-xCo2O4 increased. Multiple magnetic phases that transition from paramagnetic to ferrimagnetic to ferrimagnetic and antiferromagnetic were observed to coexist in the Ni0.5Mn0.5Co2O4 sample. At low temperatures, the ferromagnetic and antiferromagnetic phases coexist in NixMn1-xCo2O4 (x = 0 and 0.25), and as the concentration of Ni increases, NixMn1-xCo2O4 (x = 0.75 and 1) show a spin glass state. The structure of NixMn1-xCo2O4 (x < 0.5) is mainly affected by cation defects, and by cation substitution when x is greater than 0.5. The results of first-principles calculations show that covalent bonds exist in NixMn1-xCo2O4 and that the strength of the Ni-O bond is greater than that of the Mn-O bond.  相似文献   

6.
Cerium oxide doped with oxides of rare earth elements is a multifunctional material, a wide range of uses which is associated with its unique physicochemical properties. Phase diagrams of multicomponent systems are the physicochemical basis for the creation of new materials with improved characteristics.In this work, phase equilibria in ternary CeO2–La2O3–Dy2O3 and binary La2O3–Dy2O3 systems in the whole concentration range were studied. No new phases have been identified in these systems. An isothermal section of the phase diagram of the CeO2–La2O3–Dy2O3 system at a temperature of 1500 °С is constructed. No new phases have been detected in the system. It was found that in the studied ternary system solid solutions are formed on the basis of (F) modification of CeO2 with structure of fluorite type, monoclinic (B), cubic (C) and hexagonal (A) modifications of Ln2O3.In the La2O3–Dy2O3 binary system (1500–1100 °С) three types of solid solutions are formed: based on hexagonal modification A-La2O3, monoclinic modification B-Dy2O3 and cubic modification C-Dy2O3 separated by two-phase fields (A+B) and (B+C), respectively. The boundaries of the regions of homogeneity of solid solutions based on A-La2O3 are determined by compositions containing 35–40, 20–25, 15–20 mol% Dy2O3 at 1500, 1250, 1100 °C, respectively. From the obtained data it follows that the solubility of Dy2O3 in the hexagonal modification of lanthanum oxide is 39 mol% at 1500 °C, 23 mol. % at 1250 °C and 16 mol% at 1100 °C. The limits of existence of solid solutions based on monoclinic B-modification are determined by compositions containing 30–35, 65–60 (1250 °С), 35–40, 55–60 (1100 °С) 40–45, 70–75 (1500 °C) mol% Dy2O3.In the studied system, with a decrease in temperature from 1500° to 1100°C, there is a decrease in the solubility of La2O3 in the crystal lattice of cubic solid solutions of C-type from 16 to 10 mol%.  相似文献   

7.
We demonstrate the structural evolution of polymorphic phases in Al2O3-inserted SrMnO3 ceramics synthesized by solid state reaction. While the 4H-hexagonal phase is predominant in pure SrMnO3 ceramics, a small amount of 6H-hexagonal polymorph is identified in addition to the primary 4H-hexagonal SrMnO3 and the secondary hexagonal SrAl2O4 phases in the as-sintered ceramics, evidenced by x-ray diffraction and subsequent Rietveld refinement analyses. The existence of the 6H-hexagonal SrMnO3 phase is corroborated using Raman spectroscopy. The chemical compositions and electronic structures of the Al2O3-inserted SrMnO3 compounds are also examined using energy dispersive spectroscopy and x-ray photoelectron spectroscopy, respectively. The first-principles calculations reveal that there is no clear difference between the total energies of 4H- and 6H-hexagonal polymorphs regardless of the presence/absence of Sr and oxygen vacancies. Possible origins are discussed with the estimation of actual strain based on the refined lattice parameter of 6H SrMnO3.  相似文献   

8.
The liquid phase formation in the system SiC–Al2O3–Y2O3 was investigated via differential thermal analysis (DTA) combined with thermogravimetry (TG). For this purpose mixtures of various alumina and yttria mol ratios and 10 and 20 mol% silicon carbide were densified and heat treated at different temperatures. It was shown that silicon carbide in the examined amounts has low influence on the melting temperature of the oxide phase. The compositions and microstructures formed were studied by SEM, EDX and XRD. The results were compared to thermodynamic calculations.  相似文献   

9.
《Ceramics International》2016,42(15):16579-16583
Tb3+-Sm3+ co-doped Sr9Gd(PO4)5(SiO4)F2 (SGPSF) phosphors were prepared through a solid-state reaction, and their luminescence properties as well as energy transfer mechanism have been investigated in detail. The SGPSF:Tb3+, Sm3+ phosphors system could be efficiently excited at wavelengths ranging from 200 to 500 nm, which is well matched with the spectra of near ultraviolet chips. The emission of SGPSF:Tb3+, Sm3+ phosphor covers the entire visible region with sharp peaks in the blue, green, and red regions. The emission color of SGPSF:Tb3+, Sm3+ could be adjusted from green (0.275, 0.378) to red (0.519, 0.295) by controlling the doping content of Sm3+/Tb3+.  相似文献   

10.
Novel high quality factor microwave dielectric ceramics (1?x)ZrTiO4?x(Mg1/3Nb2/3)TiO4 (0.325≤x≤0.4) and (ZrTi)1?y(Mg1/3Nb2/3)yO4 (0.2≤y≤0.5) with the addition of 0.5 wt% MnCO3 in the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system were prepared, using solid‐state reaction method. The relationship between the structure and microwave dielectric properties of the ceramics was studied. The XRD patterns of the sintered samples reveal the main phase belonged to α‐PbO2‐type structure. Raman spectroscopy and infrared reflectivity (IR) spectra were employed to evaluate phonon modes of ceramics. The 0.65ZrTiO4?0.35(Mg1/3Nb2/3)TiO4?0.5 wt% MnCO3 ceramic can be well densified at 1240°C for 2 hours and exhibits good microwave dielectric properties with a relative permittivity (εr) of 42.5, a quality factor (Q×f) value of 43 520 GHz (at 5.9 Ghz) and temperature coefficient of resonant frequency (τf) value of ?5ppm/°C. Furthermore, the (ZrTi)0.7(Mg1/3Nb2/3)0.3O4?0.5 wt% MnCO3 ceramic sintered at 1260°C for 2 hours possesses a εr of 31.8, a Q×f value of 35 640 GHz (at 6.3 GHz) and a near zero τf value of ?5.9 ppm/°C. The results demonstrated that the (Mg1/3Nb2/3)O2–ZrO2–TiO2 ternary system with excellent properties was a promising material for microwave electronic device applications.  相似文献   

11.
透明镁铝尖晶石陶瓷的制备,对粉体有特殊的要求.高纯、超细、分散性好、高活性的粉体是制备镁铝尖晶石透明陶瓷的首要条件.本文以制备镁铝尖晶石透明陶瓷为目标,从粉体的纯度和粉体颗粒特征两方面分析了粉体的性能对制备透明镁铝尖晶石陶瓷的影响,介绍了几种可用于制备镁铝尖晶石透明陶瓷粉体的方法,分析比较了每种方法的优缺点.  相似文献   

12.
13.
The identification of racemic species of enantiomeric 3-chloromandelic acid (3-ClMA) as well as ternary solubility measurement in a mixture of water and isopropanol (IPA) was studied in this paper. Thermal analyses were carried out for mixtures of the two enantiomers with different compositions. The binary fusion diagram suggested the presence of a racemic compound for racemate 3-ClMA. It was verified with the ternary solubility phase diagram by dissolving various mixtures into the H2O/IPA solution. Ternary phase diagram revealed a strong temperature dependency of solubility for the 3-ClMA system. In order to shorten the experimental time in the solubility measurement, a semi-empirical thermodynamic model (UNIQUAC) was used to predict the solubility of various compositions of enantiomers at different temperatures. Results indicate that UNIQUAC model can provide good predictions in the solubility of racemate, eutectic and (R)-3-ClMA in both pure water and H2O/IPA (9/1 weight ratio) system. In addition, structures of racemate and pure (R)-3-ClMA were also studied using a powder X-ray diffractometer. Thermodynamic prediction, thermal analysis, and structural study are in excellent agreement for identifying the enantiomeric 3-ClMA system as a racemic compound forming system.  相似文献   

14.
The hot corrosion behaviors of Sr(Y0.05Yb0.05Zr0.9)O2.95 (SYYZ) ceramic were investigated in Na2SO4, V2O5, and Na2SO4 + V2O5 salts mixture, respectively. Na2SO4 did not react with SYYZ ceramic at 900, 950 and 1000 °C. m-ZrO2, YVO4 and YbVO4 were the main corrosion products on the SYYZ ceramic surface in V2O5 at 800 and 900 °C, whereas Sr3V2O8 and t-ZrO2 appeared at 1000 °C. In Na2SO4 + V2O5 salts mixture, the corrosion products were Sr3V2O8 and t-ZrO2 at 800 and 900 °C on the SYYZ ceramic surface, however, a new phase of SrZrO3 developed at 1000 °C. The phase transformation and chemical interaction are the primary corrosion mechanisms for degradation of SYYZ ceramic.  相似文献   

15.
The phase diagram of the Y2O3-YF3 system up to 1973 K was investigated using a classical equilibration/quenching experiment and differential thermal analysis (DTA). Equilibrium phases were confirmed by electron probe microanalysis (EPMA) and X-ray diffraction (XRD) phase analysis. For the very first time, the entire range of the phase diagram of yttrium oxy-fluoride system up to 1973 K was experimentally determined. Cubic-Y2O3 phase dissolves more than 5 mol% of YF3 at 1973 K. The melting points of YOF and vernier phases are found to be higher than 1973 K and their steep liquidus in the YF3-rich region are determined. Based on new experimental phase diagram data and thermodynamic property data in the literature, the Y2O3-YF3 system was thermodynamically modeled by the CALculation of PHAse Diagram (CALPHAD) method. As applications of the thermodynamic database, metastable solubilities of YF3 in Y2O3 during plasma etching process were calculated.  相似文献   

16.
17.
丁彦  郭露村 《中国陶瓷》2006,42(11):6-8,11
将烧结的Al2O3/PSZ(3Y)陶瓷材料在不同温度和时间下进行热处理,对不同热处理制度下的试样致密性能和力学性能进行了测试,用X射线衍射分析了热处理前后材料中的各晶相的变化情况。结果表明:1560℃烧结的Al2O3/PSZ(3Y)陶瓷材料,经1100℃热处理6小时后其抗弯强度达到680MPa,比未处理试样的强度提高了近30%。热处理后基体中出现的不同晶格常数的四方氧化锆晶相对提高材料的力学性能有利。  相似文献   

18.
通过改良合成复体法对(NH4)2S2O3-(NH4)2SO4-H2O三元体系在298 K下的溶液相平衡进行研究。利用X-射线粉末衍射法(XRD)表征平衡固相组成。结果证实:该方法能很好地用于(NH4)2S2O3-(NH4)2SO4-H2O三元体系平衡固相组成的分析。依据水、硫酸铵及硫代硫酸铵组成的饱和溶液各组分的质量分数绘制了(NH4)2S2O3-(NH4)2SO4-H2O在298 K下的三元体系相图。依据三元体系相图,结果显示:硫代硫酸铵的结晶区远远大于硫酸铵的结晶区,同时在该温度下,硫代硫酸铵、硫酸铵及水形成简单三元体系,体系中没有水合物形成。  相似文献   

19.
采用等温溶解平衡法研究Na2B4O7-NaBr-Na2SO4-H2O四元体系在348 K的相平衡关系,测定了平衡液相的溶解度和密度。根据实验数据绘制相应相图。该四元体系相图中有1个共饱点E,3条单变量曲线E1E,E2E,E3E,3个结晶区的平衡固相分别为:NaBr,Na2SO4和Na2B4O7·5H2O。研究结果表明:该四元体系无复盐和固溶体生成,属于简单四元体系,NaBr对Na2B4O7·5H2O和Na2SO4有较强的盐析作用。并对NaBr和Na2B4O7在不同温度下含有的结晶水数进行了对比分析,简要讨论了密度变化规律。  相似文献   

20.
采用等温溶解平衡法测定KH_2PO_4-KNO_3-H_2O三元水盐体系在313.15 K条件下的溶解度,并利用湿渣法和XRD对平衡固相进行分析和验证。根据实验数据绘制相图,相图结果表明,KH_2PO_4-KNO_3-H_2O体系的溶解度等温线有一个三元共饱和点,两条分支,将相图划分为4个区域:不饱和区、KH_2PO_4结晶区、KNO_3结晶区和KH_2PO_4-KNO_3的混合结晶区。313.15 K下的共饱和点组成为w(KH_2PO_4)7.76%、w(KNO_3)33.24%。同时,测定溶液的密度,画出三元体系溶液密度与KNO_3含量的关系图,并将实验测定的密度值与密度模型计算的密度值进行比较,验证了该密度模型的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号