首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ceramic composites are promising candidates as structural materials for future fission and fusion reactors. In present work, Al2O3-ZrO2-SiC ternary ceramic composites were irradiated with 2.0 MeV He-ions at 300 and 800 ℃. Grazing incidence X-ray diffraction results confirmed that there was irradiation induced shift and broadening of diffraction peaks, but no amorphization of Al2O3-ZrO2-SiC composite were observed up to fluence of 1.72 × 1018 ions/cm2. Transmission electron microscopy observations showed that throughout the entire irradiation region, nano-sized helium bubbles are mostly distributed in Al2O3 grains and partly in ZrO2 grains, while no detectable bubbles are observed in SiC grains. No obvious agglomeration of bubbles was found at grain/phase boundaries. By using nanoindentation technique, slight hardening or softening was confirmed for the samples irradiated at 300 and 800 ℃ respectively. The absence of amorphization and surface exfoliation indicating the Al2O3-ZrO2-SiC composite exhibits remarkable resistance to He-ions irradiation.  相似文献   

2.
The phase transitions and He bubble evolution in Ti3AlC2 with the sequential He ions implantation and Fe ions irradiation at room temperature were investigated with grazing incidence X-ray diffraction and transmission electron microscopy. The pre-implanted He makes an obviously effect of suppressing the phase transitions caused by the following Fe ions irradiation. The following Fe ions irradiation was also found to create a competitive effect on the evolution of the pre-formed He bubbles. It can cause not only the growth of He bubbles, but the shrinkage (or re-solution of He bubbles). This will improve the resistance to He bubbles induced damage for Ti3AlC2. Both He ions implantation and Fe ions irradiation actually inhibit each other's irradiation damage to the material. This may play a positive role in reducing irradiation damage to the Ti3AlC2 material, and also provides new insight into irradiation resistance of this material.  相似文献   

3.
《Ceramics International》2019,45(11):14297-14304
The present work aims to provide fundamental insights into the grain size dependence and mechanical behavior of hot-pressed Al2O3-ZrO2 ceramic at its eutectic composition, and further to explore the hardening effect of laser-induced surface nanoeutectic layer. The underlying correlations between densification behavior, grain size distribution and mechanical properties were elucidated. Sintering at 1550 °C promotes the densification without extensive grain growth, and in this case the sample exhibits a critical density of 99.3 %. The average grain size is tailored into a range of 0.6–0.9 μm, and the measured flexural strength and toughness reach 1100 MPa and 11 MPa·m1/2, respectively. The metastable t-ZrO2 grains indeed play a pivotal role in energy dissipation at the crack tip through crack deflection and branching. In addition, the mechanical behavior is reasonably explained through constructing a multilevel toughening mechanism map associated with grain size distribution of ZrO2. Particularly, surface nanocrystallized Al2O3-ZrO2 eutectic layer with a thickness of 1000 μm free of pores and cracks is achieved by a rapid laser melting process. The outmost laser-modified nanoeutectic layer exhibits a fine cellular structure with an interphase spacing of only 105 nm and a hardness of as high as 26.1 GPa, which provides a promising potential in enhancing significantly the hardness and wear resistance for applications as sliding ceramic components.  相似文献   

4.
靳元勋  霍地  孙旭东 《化工进展》2021,40(Z2):309-314
采用二乙三胺五乙酸(DTPA)为配合剂,以简易的液相法合成出微纳米纤维状Al和Al-Zr前体,煅烧处理制备了棒状α-Al2O3和Al2O3-ZrO2复合陶瓷粉体。同时研究了DPTA∶Al3+质量比、反应温度与时间对陶瓷粉体形态的影响。利用X射线衍射(XRD)、热分析(TG/DSC)以及扫描电子显微镜(SEM)对粉体进行了表征。结果表明:较高的DTPA∶Al3+质量比以及较长的反应时间有利于制备高长径比的纤维棒状Al和Al-Zr配合物前体。合成纳米纤维状α-Al2O3和Al2O3-ZrO2前体的最优条件是反应温度60℃,反应时间5.5h,DTPA∶Al3+比例为1.2∶1。相应地,该前体煅烧后可以制备出棒状α-Al2O3和Al2O3-ZrO2复合陶瓷粉体。  相似文献   

5.
Fine-grained Al2O3/SiC composite ceramic tool materials were synthesized by two-step microwave sintering. The effects of first-step sintering temperature (T1), content and particle size of SiC on the microstructure and mechanical properties were studied. It was found that the sample with higher content of SiC was achieved with finer grains, and the incorporation of SiC particles could bridge, branch and deflect the cracks, thus improving the fracture toughness. Higher T1 was required for the densification of the samples with higher content of SiC (>5?wt%). The sample containing 3?wt% SiC particles with the mean particle size of 100?nm, which was sintered at 1600?°C (T1) and 1100?°C (T2) for 5?min had the fine microstructure and optimal properties. Its relative density, grain size, Vickers hardness and fracture toughness obtained were 98.37%, 0.78?±?0.31?μm, 18.40?±?0.24?GPa and 4.97?±?0.30?MPa?m1/2, respectively. Compared to the sample prepared by single-step microwave sintering, although near full densification can be achieved in both two methods, the grain size was reduced by 36% and the fracture toughness was improved by 28% in two-step microwave sintering.  相似文献   

6.
《Ceramics International》2020,46(4):4240-4247
In this paper, high-porosity Al2O3 ceramic foams called Al2O3 PHM ceramics were fabricated through selective laser sintering (SLS) via Al2O3 poly-hollow microspheres (Al2O3 PHMs). SLS parameters were optimized by an orthogonal experiment as to be laser power = 6 W, scanning speed = 1800 mm/s, and scanning space = 0.15 mm. The effect of sintering temperature on microstructure, shrinkage, porosity, phase composition, mechanical properties and pore size distribution of Al2O3 PHM ceramics were investigated. When sintering temperature increased, Al2O3 PHM ceramics contained only Al2O3 phase and were gradually densified. With the raise of sintering temperature, the porosity of Al2O3 PHM ceramics decreased gradually from 77.09% to 72.41%, but shrinkage in H direction and compressive strength of Al2O3 PHM ceramics increased from 6.63% and 0.18 MPa to 13.10% and 0.72 MPa, respectively. Sintering temperature had little effect on pore size distribution of Al2O3 PHM ceramics, which only declined from 24.2 to 21.4 μm with the increase of sintering temperature from 1600 to 1650 °C. This method can not only directly prepare ceramic foams with complex shapes, but also control properties of ceramic foams. It provides a simple preparation method for many kinds of ceramic foams with complex structure and high porosity by using PHMs with different composition.  相似文献   

7.
The catastrophic fracture characteristics of ceramic materials have become one of the most serious factors limiting their application in critical areas, as a result, it is urgent to overcome the brittleness and improve the damage tolerance of ceramic materials. Herein, a series of Al2O3 composite ceramics developed with short Al2O3 fibers and a compound interface phase composed of Al2O3 and h-BN powders, followed by investigating their fracture behaviors and damage tolerance. Results show that these composites present progressive fracture manners with the rising resistance curve (R-curve) behaviors, and the maximum crack growth toughness of the sample with 15% compound interface phase reaches above 10 MPa·m1/2 (135% increase with respect to the reference alumina). Meanwhile, the composite ceramic exhibits an excellent ability to resist catastrophic failure with a large critical crack size (105.47 ± 19.11 μm) and high damage tolerance parameter (0.71 ± 0.06 m1/2), which are close to 14.57 times and 5.92 times higher than those of the reference alumina. The superior performances are mainly attributed to the precise combination of compound interface phase for inducing crack and interlocking Al2O3 fibers for load capacity.  相似文献   

8.
《Ceramics International》2023,49(19):31794-31801
In this paper, BNNSs/Al2O3 composite powder was prepared by in-situ reaction using borate nitridation method and BNNSs/Al2O3 composite ceramics were prepared by hot-pressing sintering. This method achieves uniform mixing of BNNSs and Al2O3 ceramic matrix and reduces the introduction of impurities in the processing process. The BNNSs/Al2O3 composite ceramics have excellent bending strength (549.4 MPa), fracture toughness (5.18 MPa m1/2) and hardness (21.3 GPa). The high hardness of composite ceramics is attributed to high grain boundary strength and density. The reinforcing mechanisms of ceramics include BNNSs pull-out, BNNSs bridging, crack deflection as well as the transgranular fracture and intergranular fracture of Al2O3 matrix.  相似文献   

9.
《Ceramics International》2016,42(7):8079-8084
The directionally solidified Al2O3/MgAl2O4/ZrO2 ternary eutectic ceramic was prepared via induction heating zone melting. Smooth Al2O3/MgAl2O4/ZrO2 eutectic ceramic rods with diameters of 10 mm were successfully obtained. The results demonstrate that the eutectic rods consist of Al2O3, MgAl2O4 and ZrO2 phases. In the eutectic microstructure, the MgAl2O4 and Al2O3 phases form the matrix, the ZrO2 phase with a fibre or shuttle shape is embedded in the matrix, and a quasi-regular eutectic microstructure formed, presenting a typical in situ composite pattern. During the eutectic growth, the ZrO2 phase grew on non-faceted phases ahead of the matrix growing on the faceted phase. The hardness and fracture toughness of the eutectic ceramics reached 12 GPa and 6.1 MPa·m 1/2, respectively, i.e., two times and 1.7 times the values of the pre-sintered ceramic, respectively. In addition, the ZrO2 phase in the matrix reinforced the matrix, acting as crystal whiskers to reinforce the sintered ceramic.  相似文献   

10.
《Ceramics International》2023,49(13):21296-21307
Al2O3 ceramic and 304 stainless steel were brazed with AgCuTi filler in this paper. Two kinds of composite filler were prepared by adding Cu foam and Cu foam covered with graphite (Gr-Cu foam) to relieve the residual stress of the joints. The effects of Cu foam pore size on the joints were investigated in detail, and the evolution mechanism of the joints was analyzed. Graphite-reinforced Cu foam was fabricated by spraying graphite for the first time. Results showed that the extremely low coefficient of thermal expansion of graphite and the good energy absorption performance of Cu foam were both conducive to reducing the thermal residual stress during the cooling process. Gr-Cu foam with pre-filled pores was used to solve the problems of structural dissolution of Cu foam and unfilled solder in Cu foam pores to a certain extent. And it played a key role in preventing the diffusion of metal atoms. The graphite on the surface of the Cu foam generated TiC in the brazing seam. The TiC and Cu foam promoted the formation of the TiCu strengthening phase. Furthermore, when the pore size of the Gr-Cu foam was 150 μm, the maximum shear strength of the joint was 246.84 MPa. This value was about 40% higher than that of Cu foam with the same pore size. The residual stresses of joint with and without graphite-reinforced were calculated, respectively, for both conditions. The reduction of residual stress was found after adding the graphite during brazing.  相似文献   

11.
Al2O3/Y3Al5O12(YAG) directionally solidified eutectic (DSE) crystal was prepared by optical floating zone technique. Al2O3/YAG DSE consists of continuous entangled Al2O3 and the YAG forming a three-dimensional networks structure. The volume fraction of porosity is ultra-low (0.013%) and the average equivalent diameters of most pores (>84%) are smaller than 4?μm. The Al2O3/YAG DSE shows excellent high-temperature elastic stiffness. The Young’s modulus at 1500?°C maintains more than 85% of the value at room temperature. Bending strength exhibits excellent retention up to high temperature as well. High-temperature ball indentation testing shows plastic deformation involving dislocations and twinning, which predominantly occur in Al2O3 phase, while the YAG phase is stable. Evaluation on Hv/E index predicts Al2O3/YAG DSE with moderate capability to accommodate damages. Our results highlight Al2O3/YAG DSE as excellent high-temperature structural materials.  相似文献   

12.
Conclusions A highly dense ceramic based on the eutectic composition of the Al2O3-ZrO2 system was obtained using 3 mole % Y2O3 addition. The ceramic has a fine-grained structure and high hardness and strength.Translated from Ogneupory, No. 2, pp. 8–10, February, 1987.  相似文献   

13.
The low fracture toughness of Al2O3-based ceramics limited their practical application in cutting tools. In this work, graphene was chosen to reinforce Al2O3-WC-TiC composite ceramic tool materials by hot pressing. Microstructure, mechanical properties and toughening mechanisms of the composite ceramic tool materials were investigated. The results indicated that the more refined and denser composite microstructures were obtained with the introduction of graphene. The optimal flexural strength, Vickers hardness, indentation fracture toughness were 646.31?±?20.78?MPa, 24.64?±?0.42?GPa, 9.42?±?0.40?MPa?m1/2, respectively, at 0.5?vol% of graphene content, which were significantly improved compared to ceramic tool material without graphene. The main toughening mechanisms originated from weak interfaces induced by graphene, and rugged fractured surface, grain refinement, graphene pull-out, crack deflection, crack bridging, micro-crack and surface peeling were responsible for the increase of fracture toughness values.  相似文献   

14.
《Ceramics International》2020,46(10):16431-16438
Al2O3-CA6-ZrO2/Ni multi-phase composites were fabricated by vacuum hot pressing sintering at 1650 °C under the pressure of 30 MPa for 30 min. The microstructural evolution rule of the composites was investigated as a function of Al2O3 particle size. Upon increasing the Al2O3 particle size to 30 μm, the generated CA6 underwent a transformation from unfixed type to a plate-like pattern and to a combined CA6-Al2O3 matrix, whereas the fracture mode of m-ZrO2 changed from an intergranular fracture to an intergranular and transgranular mixed type due to the improved interface binding energy. Additionally, satisfactory mechanical properties of the composites were achieved when the Al2O3 particle size was 30 μm. Under the synergistic effect of different strengthening and reinforcing phases, the inhomogeneous distribution caused by poor wettability between Al2O3 and Ni was effectively solved by the distributions of “intercrystalline type” and “intracrystalline type” for the Ni phase. The mechanisms of the microstructural evolution, phase transformation and improved mechanical properties are discussed in detail.  相似文献   

15.
《Ceramics International》2017,43(2):2143-2149
Graphene has been successfully fabricated by a novel method, using graphite powder and NMP (N-Methyl Pyrrolidone) as the raw materials based on the principles of liquidoid exfoliation and mechanical milling. SEM, TEM and Raman spectrum were utilized to characterize the morphology of the homemade graphene, illustrating the few defects and rare layers were endowed in this study. Afterwards, the homemade and commercial graphene were doped into Al2O3 powder with the mass ratio of 0%, 1%, 2%, and 3% to reinforce the mechanical properties of the matrix. The composites were processed at 1600 °C, pressure of 30 MPa and soaking time of 1 h by vacuum hot pressing. The test results illustrated the bending strength and fracture toughness tended to be intensive at first and subdued afterwards, achieving the optimal performance of 625.4±18.2 MPa and 6.07±0.22 MPa m1/2 at 2 wt% prepared graphene additive, and the commercial grapheme owned the best heighten effect in 3 wt% graphene/Al2O3 composites. Compared to the blank Al2O3 sintered samples, the graphene/Al2O3 specimens (both prepared and commercial additive) behaved evident increase in mechanical properties, even upon 30% enhanced in fracture toughness and bending strength generally by the prepared grapheme. Moreover, the prepared graphene had better improvement effect than commercial graphene in enhancing mechanical properties of Al2O3 ceramic.  相似文献   

16.
《Ceramics International》2017,43(13):10224-10230
Whiskers and nanoparticles are usually used as reinforcing additives of ceramic composite materials due to the synergistically toughening and strengthening mechanisms. In this paper, the effects of TiC nanoparticle content, particle size and preparation process on the mechanical properties of hot pressed Al2O3-SiCw ceramic tool materials were investigated. The results showed that the Vickers hardness and fracture toughness of the materials increased with the increasing of TiC content. The optimized flexural strength was obtained with TiC content of 4 vol% and particle size of 40 nm. The particle size has been found to have a great influence on flexural strength and small influence on hardness and fracture toughness. It was concluded that the flexural strength increased remarkably with the decreasing of the TiC particle size, which was resulted from the improved density and refined grain size of the composite material due to the dispersion of the smaller TiC particle size. SEM micrographs of fracture surface showed the whiskers to be mainly distributed along the direction perpendicular to the hot-pressing direction. The fracture toughness was improved by whisker crack bridging, crack deflection and whisker pullout; the TiC nanoparticles in Al2O3 grains caused transgranular fracture and crack deflection, which improved the flexural strength and fracture toughness with whiskers synergistically. Uniaxial hot-pressing of SiC whisker reinforced Al2O3 ceramic composites resulted in the anisotropy of whiskers’ distribution, which led to crack propagation differences between lateral crack and radical crack.  相似文献   

17.
Al2O3/Y3Al5O12/ZrO2 directionally solidified ceramic has been considered as a promising candidate for ultrahigh temperature structural materials due to its excellent performance even close to its melting point. In this work, laser floating zone (LFZ) solidification experiments were performed on Al2O3/Y3Al5O12/ZrO2 hypereutectic with the solidification rates between 2 μm/s and 30 μm/s. The full eutectic lamellar microstructure is obtained with hypereutectic composition. The solid/liquid interface morphology is investigated. The microstructure characteristic is discussed based on the solid/liquid interface. The variation of lamellar spacing with different compositions and solidification rates was reported and discussed by considering an irregular eutectic growth model. The maximum hardness and fracture toughness are 19.06 GPa and 3.8 MPa m1/2, respectively. The toughening mechanism of ZrO2 is discussed based on the scenario of the crack propagation pattern.  相似文献   

18.
反应结合Al2O3—ZrO2—SiC复合陶瓷的制备工艺与性能   总被引:3,自引:0,他引:3  
采用反应结合技术研究了Al2O3-ZrO2-SiC复合陶瓷的制备工艺与材料性能,比较孙同的原料来源对致密化行为及材料性能的影响,含细Al2O3和粗SiC的配方获得了最快的致密化速率及最高的烧结密度,该材料经1550℃烧结30min后再热等静压获得了近100%的致密度和760MPa的弯曲强度。  相似文献   

19.
《Ceramics International》2019,45(13):16504-16511
The aim of this study was to improve the mechanical properties of Al2O3 ceramics by the addition of Y2O3-stabilized ZrO2 whiskers (designated as Al2O3/YSZW composite) through the flux method and hot-pressing technology. The effect of YSZW content on their microstructure, phase composition and transformability, mechanical properties, and wear resistance was systematically investigated. The Al2O3/YSZW composites containing 10 wt% YSZW exhibited the best mechanical performance, including the highest content of YSZW tetragonal phase and transformability as well as the largest values in their relative density (99.5%), hardness (1969 HV), fracture toughness (9.57 MPa m1/2) and flexural strength (855 MPa). The strengthening and toughening of the Al2O3/YSZW composites were attributed to the YSZW tetragonal-monoclinic phase transformation as well as the whiskers reinforcing effect. Furthermore, the Al2O3/YSZW composites also showed the highest friction and wearing properties.  相似文献   

20.
《Ceramics International》2020,46(10):15998-16007
Comprehensive study on effect of YAG amount on densification, creep resistance and room-temperature mechanical properties of Al2O3-YAG composite pressureless sintered at 1600 °C was conducted. The main goal was to optimize the amount of YAG in order to fabricate a composite with improved creep resistance and sufficiently good room-temperature mechanical properties. The composite was made by mixing a commercially available Al2O3 powder with fine YAG powder obtained by glycine-nitrate combustion synthesis starting from aluminum nitrate and yttrium nitrate. Increased driving force for sintering of fine YAG powder allowed fabrication of dense Al2O3-YAG composite with up to 30 vol% YAG. The presence of YAG was found to be very effective in improving creep resistance of Al2O3-YAG composite. Large Y3+ ions blocked diffusion along Al2O3 grain boundaries, reduced diffusivity and therefore enhanced creep resistance of Al2O3-YAG composite which continuously increased as the YAG amount increased. Тhe presence of YAG was also found to improve mechanical properties such as hardness and elastic modulus. The improvement of these properties was ascribed to increased density of Al2O3-YAG composites owing to high sintering activity of YAG powder. While fracture strength of the composite can be as high as that of monolithic Al2O3, fracture toughness of composite decreased continuously as the YAG content increased. The decrease was ascribed to transgranular fracture of both YAG and Al2O3 grains in samples containing larger amounts of YAG. The proper balance between fracture toughness and creep resistance was found in composite containing 18 vol% YAG which had considerably improved creep resistance accompanied by a relatively small decrease in fracture toughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号