首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report the structure, dielectric, ferroelectric and piezoelectric properties of Cr-Mn co-doped (1-y)BiFe1-xCrxO3-yBaTi1-xMnxO3 (0≤x≤0.04, 0.2≤y≤0.27) ceramics. By varying both x and y, a series of samples near morphotropic phase boundaries exhibiting both high ferroelectric Curie temperature TC (∼580−643 °C) and relatively large piezoelectric constant d33 are constructed. Especially, the sample with y = 0.24 and x = 0.02 is found to show coexistence of high depolarization temperature Td (∼551 °C) and relatively large d33∼116 pC/N, superior to most of those of BiFeO3 based high-temperature piezoceramics reported previously. The enhanced ferroelectric TC in the Cr-Mn modified samples can be ascribed to the combined effects of large lattice distortion and high tetragonal phase content. These results demonstrate that constructing morphotropic phase boundaries via considering simultaneously the role of lattice distortion might be effective route to realize high-temperature and high piezoelectricity in BiFeO3-based systems.  相似文献   

2.
《Ceramics International》2022,48(17):24716-24724
Dielectric capacitors show great potential in superior energy storage devices. However, the energy density of these capacitors is still inadequate to meet the requirement of energy storage applications. In this study, the Bi0.5Na0.47Li0.03TiO3-xNaNbO3 (BNLT-xNN) ceramics were prepared via conventional solid-phase reaction. Results showed that NN can efficaciously enhance the breakdown strength (Eb) and the relaxation behavior of the BNLT ceramic because of the broken ferroelectric long-range order. When x = 0.3, the maximum Eb reached 350 kV/cm, at which the 0.7BNLT-0.3NN ceramic exhibited the high recoverable energy storage density (Wrec) of 4.83 J/cm3 and great efficiency (η) of 78.9%. The ceramic demonstrated good temperature stability at 20 °C-160 °C and excellent fatigue resistance. Additionally, the 0.7BNLT-0.3NN ceramic presented high power density (PD; ~77.58 MW/cm3), large current density (CD; ~861.99 A/cm2), and quite short discharge time (t0.9; ~0.090 μs). These results indicated that the 0.7BNLT-0.3NN material has excellent energy storage properties and various application prospects.  相似文献   

3.
《Ceramics International》2022,48(21):31265-31272
Bismuth layer structured Na0.5Bi4.5Ti4O15 (NBT) ferroelectric is one of the most promising materials for potential applications at high temperature. However, it is challenged to achieve a balance between high Curie temperature piezoelectric coefficient and excellent thermal stability for NBT piezoceramics. Here, through chemical modification at the A site of NBT with Ca2+, novel (Na0.5Bi0.5)1-xCaxBi4Ti4O15 piezoceramics with excellent properties fabricated by solid state reaction were studied. After doping of Ca2+, the Curie temperature TC increased from 648 °C to 662 °C while the piezoelectric coefficient d33 increased from 14 pC/N to 22 pC/N which can be attributed to the intrinsic contribution of TiO6 octahedral lattice distortion (tilting and rotation) and the extrinsic contribution of the increased density of domain walls. The composition of (Na0.5Bi0.5)0.95Ca0.05Bi4Ti4O15 ceramics with x = 0.05 has the optimal performance with high TC of 655 °C, large d33 of 22 pC/N, high electrical resistivity ρ close to 107 Ω cm at 500 °C and especially excellent thermal stability of d33 only about 5% reduction after being annealed at 625 °C. The work effectively reveals the great potential of CNBT-5 ceramics for high-temperature piezoelectric applications.  相似文献   

4.
《Ceramics International》2020,46(3):2798-2804
To further improve the properties of KNN-based lead-free ceramics, a new ceramic system, (0.98-x)K0.525Na0.475Nb0.965Sb0.035O3-0.02 BaZr0.5Hf0.5O3-x(Bi0.5Na0.5)ZrO3(KNNS-BZH-xBNZ) was designed, the relevant properties such as piezoelectricity, strain, and temperature stability were analysed in detail. It was found that the R-T phase boundary can be successfully constructed when x=0.030, and this two-phase coexistence shows relatively good comprehensive properties (d33~410 pC/N, TC~255 °C, Suni~0.132%, and d33*~441 pm/V). Meanwhile, its strain property also shows good temperature stability from room temperature to 180 °C (Suni100°C/SuniRT~97.5% and Suni180°C/SuniRT~83.9%), which is comparatively superior to many KNN-based ceramics and some lead-based ceramics. Therefore, KNNS-BZH-xBNZ ceramics may broaden the practical application of lead-free ceramics.  相似文献   

5.
Piezoceramics are important functional materials with broad applications in electronics, communication, medicine, and energy. Increasing environmental protection and human health concerns about the toxicity of lead have impelled the development of lead-free piezoceramics. At this work, in combination with phase field simulation, grain growth mechanism, ferroelectric domain wall model, and defect dipole formation mechanism, (1-x)Ba(Hf0.02Ti0.98)O3-x(Y0.5Li0.5)GeO3 [(1-x)BHT-xYLG, x = 0–0.40 mol%] lead-free piezoceramics were designed and fabricated via the two-step synthesis and solid-state reaction method, which yielded superior comprehensive electrical property. Phase field simulation respectively simulates the distribution of ferroelectric domains of O and T phase under different external electric fields (0–20 kV/mm) and the phase states under different temperatures (?100 to 150 °C). This research finds that their electrical properties are affected by the synergistic action of multiple factors, e.g., orthorhombic-tetragonal phase boundary (O-T PB), grain size (GS), domain-wall (DW), and defect dipole (DD), etc., rather than any single factor.  相似文献   

6.
Na/Bi stoichiometry plays crucial role in determining various properties of sodium bismuth titanate-based system. In this work, we have synthesised lead free (Na0.5Bi0.5)1+x TiO3 (x?=?0, 0.02 and 0.05) ceramics by sol-gel method and systematically presented structural, dielectric and ferroelectric properties at different sintering temperature. Single phase perovskite structure with rhombohedral symmetry (R3c) is obtained for all compositions from low (850°C) to maximum (1150°C) sintering temperature. The shifting of x-ray diffraction peaks and characteristic perovskite metal-oxide vibrational band (~627?cm?1) in Fourier Transform Infra-red spectra suggests compression or expansion of crystal lattice with Na/Bi non-stoichiometry. Excess of Na/Bi comprises dense crystal growth as compared to pure Na0.5Bi0.5TiO3 composition suggesting compensation of volatile elements loss during heat treatment whose impact has also been observed in dielectric as well as ferroelectric properties. It is observed that Na0.51Bi0.51TiO3 sample with x?=?0.02 exhibits better structural, dielectric and ferroelectric properties in whole range of sintering temperature.  相似文献   

7.
Li2O–Nb2O5–TiO2 based ceramic systems have been the candidate materials for LTCC application, due to their high dielectric constant and Q × f value and controllable temperature coefficient in the microwave region. However, the sintering temperature was relatively higher (above 1100 °C) for practical application. In this study, dielectric properties of Li(1+xy)Nb(1−x−3y)Ti(x+4y)O3 solid solution were studied with different x and y contents and among them, the Li1.0Nb0.6Ti0.5O3 composition (x = 0.1, y = 0.1) was selected, due to its reasonable dielectric properties to determine the possibility of low temperature sintering. The effects of 0.17Li2O–0.83V2O5, as a sintering agent, on sinterability and microwave dielectric properties of Li1.0Nb0.6Ti0.5O3 ceramics were investigated as a function of the sintering agent content and sintering temperature. With addition of 0.17Li2O–0.83V2O5 above 0.5 wt%, the specimens were well densified at a relatively lower temperature of 850 °C. Only slight decrease in apparent density was observed with increasing 0.17Li2O–0.83V2O5 content above 0.75 wt%. In the case of 0.5 wt% 0.17Li2O–0.83V2O5 addition, the values of dielectric constant and Q × f reached maximum. Further addition caused inferior microstructure, resulting in degraded dielectric properties. For the specimens with 0.5 wt% 0.17Li2O–0.83V2O5 sintered at 850 °C, dielectric constant, Q × f and TCF values were 64.7, 5933 GHz and 9.4 ppm per °C, respectively.  相似文献   

8.
Lead‐free BNT‐based piezoceramics, (1?x)Bi0.5Na0.5TiO3xBi(Mg0.5Ti0.5)O3 [(1?x)BNT–xBMT] (0.00 ≤  0.06) binary system, were synthesized using a conventional ceramic fabrication method. Effect of Bi(Mg0.5Ti0.5)O3 (BMT) substitution on room temperature (RT) crystal structure, and temperature dependence of electric properties were investigated. The XRD indicates that a pure perovskite phase is formed. The introduction of BMT decreases EC of BNT from 7.3 to 4.0 kV/mm, and increases d33 from 58 pC/N to 110 pC/N for the = 0.05. The system shows a typical ferroelectric (FE) polarization loop P(E) and butterfly bipolar strain‐electric S(E) curve at RT. For the composition of 0.95BNT–0.05BMT antiferroelectric (AFE) phase appears near 80°C, characterized by a constricted P(E) loop and altered bipolar S(E) butterfly, and gradually prevails with increasing temperature. Temperature dependence of dielectric constant shows that TC increases from 310°C for pure BNT to 352°C for the = 0.05. The results indicate that the piezoelectric properties of BNT have been improved by means of Bi(Mg0.5Ti0.5)O3 substitution.  相似文献   

9.
Aurivillius ferroelectrics, Ca0.92-x(Na0.5Bi0.5)x(Na0.5Ce0.5)0.08Bi2Ta2O9 (CNCBT-NBT100x, x = 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.30 and 0.40) ceramics were prepared by conventional electroceramic processing procedures. The novel Aurivillius ferroelectrics possess a gradual improving piezoelectricity (d33max~12.8 pC/N) and ferroelectricity (Prmax~7.4 μC/cm2) with the introduction of (Na0.5Bi0.5)2+ content. Moreover, the addition of (Na0.5Bi0.5)2+ also improves the temperature stability of piezoelectric activity obviously. The d33 of CNCBT-NBT40 maintains 94% of its initial stage even the annealing temperature reaching at 900 °C. The TC of CNCBT-NBT100x exhibits a decreasing trend with the increasing doping concentration, but CNCBT-NBT40 still possesses a high TC (TC~924.9 °C). The high-temperature electrical resistivity of CNCBT-NBT100x almost remains unchanged owing to the close band-gap energy, and the ρ of CNCBT-NBT40 is above 6 × 106 Ω?cm at 600 °C. This work may provide a new way of designing the doping formula to improve comprehensive properties of Aurivillius ferroelectrics.  相似文献   

10.
《Ceramics International》2016,42(3):4274-4284
Bi0.5(Na0.65K0.35)0.5TiO3 (BNKT) and Mn-modified Bi0.5(Na0.65K0.35)0.5(MnxTi1−x)O3 (BNKMT-103x), (x=0.0–0.5%) ferroelectric ceramics were synthesized by solid-state reaction method. Optimization of calcination temperature in Mn-doped ceramics was carried out for the removal of secondary phases observed in XRD analysis. BNKMT ceramics sintered at 1090 °C showed enhanced dielectric, piezoelectric and ferroelectric properties in comparison to pure BNKT. The average grain size was found to increase from 0.35 μm in BNKT to 0.52 μm in Bi0.5(Na0.65K0.35)0.5(Mn0.0025Ti0.9975)O3 (BNKMT-2.5) ceramics. The dielectric permittivity maximum temperature (Tm) was increased to a maximum of 345 °C with Mn-modification. AC conductivity analysis was performed as a function of temperature and frequency to investigate the conduction behavior and determine activation energies. Significant high value of piezoelectric charge coefficient (d33=176 pC/N) was achieved in BNKMT 2.5 ceramics. Improved temperature stability of ferroelectric behavior was observed in the temperature dependent P–E hysteresis loops as a result of Mn-incorporation. The fatigue free nature along with enhanced dielectric and ferroelectric properties make BNKMT-2.5 ceramic a promising candidate for replacing lead based ceramics in device applications.  相似文献   

11.
《Ceramics International》2019,45(16):19822-19828
A series of (1-x)(Bi0.5Na0.5)0.94Ba0.06TiO3-xBaSnO3 (BNBT-100xBSN, x = 0–20) lead-free ceramics were synthesized using a conventional high-temperature solid-state reaction route. The effects of BaSnO3 on the dielectric, ferroelectric and energy-storage performance of BNBT-BSN were systematically investigated. Temperature dependent permittivity curves indicated the obviously enhanced relaxor ferroelectric property. The introduction of BaSnO3 reduced the temperature corresponding to the first dielectric anomaly, which facilitated the dielectric temperature stability. △ε'/ε'150°C varied no more than 15% within the temperature range of up to 338 °C (45–383 °C) for BNBT-15BSN. A slimed P-E loop was obtained with the remnant polarization of 0.4 μC/cm2 for BNBT-15BSN. Moreover, the breakdown field intensity of BNBT-BSN increased effectively from 80 kV/cm to 115 kV/cm. Therefore, an optimum energy-storage performance was obtained in BNBT-15BSN with the energy-storage density of 1.2 J/cm3 whose energy-storage efficiency reached 86.7%. Furthermore, the possible contributions of defect and vacancy to relaxation and conductance mechanism were discussed by studying the impedance and electric modulus. The results above indicated the BNBT-100xBSN be a promising lead-free candidate for energy-storage capacitors.  相似文献   

12.
《Ceramics International》2022,48(7):9324-9329
(K,Na)NbO3 (KNN)-based ceramics have been proven to be formidable candidates among lead-free piezoelectric materials, yet poor reproducibility always hinders their progress. In the present study, the effects of low lithium substitution on the electrical properties and microstructure of (K0.5Na0.5)1-xLixNbO3 (KNLN) ceramics were investigated. All samples were synthesized by the sol-gel method. The Curie temperature (TC) of the ceramics shifted to higher temperature and gradually decreased the monoclinic-tetragonal (TM-T) phase transition. Li+ substitution had a prominent effect on the ferroelectric properties and improved the piezoelectric coefficient (d33) up to 181 pC/N. X-Ray Diffraction (XRD) studies and Field Emission Scanning Electron Microscopy (FESEM) images revealed an inevitable tetragonal tungsten bronze (TTB) secondary phase, which was formed during the preparation process. It was demonstrated that the volatilization of Li+ cations facilitated TTB growth. The coexistence of two different phase structures proved to enhance the KNN piezoelectric performance.  相似文献   

13.
In this work, Li-modified KNN ceramic compositions ((K0.5Na0.5)1−xLix)NbO3 with x = 0.03, 0.04, 0.05, 0.06, 0.65 and 0.07 were prepared by a conventional solid-state mixed-oxide method. The structural phase formation and microstructure were characterized by X-ray diffraction technique (XRD) and scanning electron microscopy (SEM). It has been found that a morphotropic phase boundary (MPB) between orthorhombic phase and tetragonal phases should exist between compositions with Li contents of 6-6.5%. The Curie temperature (Tc) of the ceramics shifted to higher temperature with increasing Li content. The room temperature dielectric constant was also seen to be higher than the pure KNN ceramics. In addition, the ferroelectric properties were found to enhance at near MPB compositions. This study clearly showed that the addition of Li could improve the dielectric and ferroelectric properties in (K0.5Na0.5)NbO3 ceramics.  相似文献   

14.
(1-x)[0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3]-xBi(Mn0.5Ti0.5)O3 (x = 0–0.06, BNKMT100x) lead-free ferroelectric ceramics were prepared via solid state reaction method. Bi(Mn0.5Ti0.5)O3 induces a structure transition from rhombohedral-tetragonal morphotropic phases to pseudo-cubic phase. Moreover, the wide range of compositions within x = 0.03–0.055 exhibit large strain of 0.31%–0.41% and electrostrictive coefficient of 0.027–0.041 m4/C2. Especially, at x = 0.04, the large strain and electrostrictive coefficient are nearly temperature-independent in the range of 25–100 °C. The impedance analysis shows the large strain and electrostrictive coefficient originate from polar nanoregions response due to the addition of Bi(Mn0.5Ti0.5)O3.  相似文献   

15.
The structure and electrical properties of perovskite layer structured (PLS) (1?x)Sr2Nb2O7x(Na0.5Bi0.5)TiO3 (SNO‐NBT) prepared by solid‐state reaction method are investigated. The addition of NBT is beneficial to speed up mass transfer and particle rearrangement during sintering, leading to better sinterability and higher bulk density up to 96.8%. The solid solution limit x in the SNO‐NBT system is below 0.03, over which Ti4+ is preferable to aggregate and results in the generation of secondary phase. After the modification by NBT, all SNO‐NBT ceramics have a Curie temperature Tc up to over 1300°C and piezoelectric constant d33 about 1.0 pC/N. The breakthrough of piezoelectricity can mainly be attributed to rotation and distortion of oxygen octahedron as well as higher poling electric field resulting from the improved bulk density. This study not only demonstrates how to improve piezoelectricity by NBT addition, but also opens up a new direction to design PLS piezoceramics by introducing appropriate second phase.  相似文献   

16.
《Ceramics International》2016,42(8):9419-9425
Lead-free piezoelectric ceramics (Bi0.5Na0.5)0.935Ba0.065Ti1−x(Fe0.5Sb0.5)xO3 (BNBT6.5–xFS, x=0.005, 0.010, 0.015, 0.020) were prepared by a conventional solid sintering technique. The effects of B-site doping of (Fe, Sb) on the phase structure, microstructure, dielectric, ferroelectric, and piezoelectric properties of BNBT6.5 ceramics were systematically investigated. Results showed that (Fe, Sb) can completely diffuse in the BNBT6.5 lattice in the all studied components. The addition of (Fe, Sb) destroyed the ferroelectric long-range order, and thus promoted the electric field induced strain response. The maximum electric field-induced strain (Smax=0.37%) with normalized strain (d33*=Smax/Emax=454 pm/V) at an applied electric field of 80 kV/cm was obtained at x=0.015. Temperature dependent measurements of both polarization and strain from room temperature to 120 °C suggested that the origin of the large strain is due to a reversible field-induced ergodic relaxor to ferroelectric phase transformation.  相似文献   

17.
The effects of composition, sintering temperature and dwell time on the microstructure and electrical properties of (0.75 ? x)BiFeO3–0.25BaTiO3xBi0.5K0.5TiO3 + 1 mol% MnO2 ceramics were studied. The ceramics sintered at 1000 °C for 2 h possess a pure perovskite structure and a morphotropic phase boundary of rhombohedral and pseudocubic phases is formed at x = 0.025. The addition of Bi0.5K0.5TiO3 retards the grain growth and induces two dielectric anomalies at high temperatures (T1  450–550 °C and T2  700 °C, respectively). After the addition of 2.5 mol% Bi0.5K0.5TiO3, the ferroelectric and piezoelectric properties of the ceramics are improved and very high Curie temperature of 708 °C is obtained. Sintering temperature has an important influence on the microstructure and electrical properties of the ceramics. Critical sintering temperature is 970 °C. For the ceramic with x = 0.025 sintered at/above 970 °C, large grains, good densification, high resistivity and enhanced electrical properties are obtained. The weak dependences of microstructure and electrical properties on dwell time are observed for the ceramic with x = 0.025.  相似文献   

18.
0.5BaZr0.2Ti0.8O3‐0.5Ba0.7Ca0.3TiO3 ceramic and its epitaxial films on (0 0 1) SrTiO3 substrate were prepared to compare their dielectric and ferroelectric properties. The ceramic has a high dielectric permittivity, a weak dielectric relaxation, a low ferroelectric Curie temperature (TC) of 60°C and a fast polarization relaxation. The films show much lower dielectric permittivities and mild dielectric relaxations. Furthermore, the TC of film with 40, 100, and 200 nm thickness is 155°C, 110°C, and 60°C, respectively, because the epitaxial strain decreases with the film thickness increasing. The higher the TC is, the more stable the room‐temperature polarization is.  相似文献   

19.
(100)C‐oriented Na0.5Bi0.5‐xSmxTiO3 (NBST) lead‐free ferroelectric thin films were prepared on Pt/Ti/SiO2/Si substrates by chemical solution deposition method, and their microstructural, dielectric, ferroelectric, and photoluminescent properties were studied. X‐ray diffraction and scanning electron microscopy analysis indicated that both the grain size and (100)C orientation degree of NBST thin films were decreased by doping Sm3+ ions. Raman spectra showed that structural symmetry of NBST thin films decreased at low Sm3+ doping concentration and then increased at high doping concentration of Sm3+ ions. An appropriate amount of Sm3+ dopants was confirmed to enhance dielectric and ferroelectric properties of the NBST thin films. Among all the compositions, the Na0.5Bi0.492Sm0.008TiO3 thin film exhibited the largest remnant polarization (2Pr) of 27.3 μC/cm2 and high dielectric constant of 1068, as well as a low dielectric loss of 0.04. Temperature‐ and frequency‐dependent dielectric characteristics illustrated the relaxor ferroelectric behavior of Na0.5Bi0.492Sm0.008TiO3 thin film. Meanwhile, the Na0.5Bi0.492Sm0.008TiO3 thin film also showed optimal orange‐red emission at 600 nm, which is originating from the 4G5/24H7/2 transition of Sm3+ ions.  相似文献   

20.
A novel (0.67-x)BiFeO3-0.33BaTiO3-x(K0.5Nd0.5)TiO3 (KNT100x, x = 0.0, 0.02, 0.04, 0.06, 0.08 mol%) ceramics were fabricated and their microstructure and electrical properties were studied. All samples displayed a pseudo-cubic symmetry, and adding of KNT had little effect on grain size. The dielectric analysis displayed the dispersion increases with the addition of KNT compositions, showing strong relaxor properties. Besides, high dielectric constant (ε’) of 23000 and dielectric peak temperature (Tm) of 390 °C remain at 1 kHz in the x = 0.02 sample while the dielectric loss (tanδ) dropped below 0.5 in the range of 30–400 °C, showing excellent electrical insulation performance. In addition, doping of KNT had obvious influence on the strain, and a large strain (Smax) of 0.26% was obtained at x = 0.02 due to the increase of electrical insulation. More importantly, the strain at 50 kV cm?1 enhanced significantly with temperature increasing, reaching a maximum strain of 0.75% with a small hysteresis coefficient of 30% at 110 °C. Particularly, KNT02 exhibited excellent fatigue resistance within 105 fatigue cycles. Presumably these results are attributed to the coexistence of ferroelectric and non-ergodic relaxor domains and the thermally activated domain wall motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号