首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper,the observational data from Marine and Meteorological Observation Platform(MMOP)at Bohe,Maoming and buoys located in Shanwei and Maoming are used to study the characteristics of air-sea temperature and specific humidity difference and the relationship between wind and wave with the tropical cyclones over the South China Sea(SCS).The heat and momentum fluxes from eddy covariance measurement(EC)are compared with these fluxes calculated by the COARE 3.0 algorithm for Typhoon Koppu.The results show that at the developing and weakening stages of Koppu,both these differences between the sea surface and the near-surface atmosphere from the MMOP are negative,and data from the buoys also indicate that the differences are negative between the sea surface and near-surface atmosphere on the right rear portion of tropical cyclones(TCs)Molave and Chanthu.However,the differences are positive on the left front portion of Molave and Chanthu.These positive differences suggest that the heat flux is transferred from the ocean to the atmosphere,thus intensifying and maintaining the two TCs.The negative differences indicate that the ocean removes heat fluxes from the atmosphere,thus weakening the TCs.The wind-wave curves of TCs Molave and Chanthu show that significant wave height increases linearly with 2-min wind speed at 10-m height when the wind speed is less than 25 m/s,but when the wind speed is greater than 25 m/s,the significant wave height increases slightly with the wind speed.By comparing the observed sensible heat,latent heat,and friction velocity from EC with these variables from COARE 3.0 algorithm,a great bias between the observed and calculated sensible heat and latent heat fluxes is revealed,and the observed friction velocity is found to be almost the same as the calculated friction velocity.  相似文献   

2.
The relationship between the tropical intra-seasonal oscillation (ISO) and tropical cyclones (TCs) activities over the South China Sea (SCS) is investigated by utilizing the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) global reanalysis data and tropical cyclone best-track data from 1949 to 2009. The main conclusions are: (1) A new ISO index is designed to describe the tropical ISO activity over the SCS, which can simply express ISO for SCS. After examining the applicability of the index constructed by the Climate Prediction Center (CPC), we find that the convection spatial scale reflected by this index is too large to characterize the small-scale SCS and fails to divide the TCs activities over the SCS into active and inactive categories. Consequently, the CPC index can’t replace the function of the new ISO index; (2) The eastward spread process of tropical ISO is divided into eight phases using the new ISO index, the phase variation of which corresponds well with the TCs activities over the SCS. TCs generation and landing are significantly reduced during inactive period (phase 4-6) relative to that during active period (phase 7-3); (3) The composite analyses indicate distinct TCs activities over the SCS, which is consistent with the concomitant propagation of the ISO convective activity. During ISO active period, the weather situations are favorable for TCs development over the SCS, e.g., strong convection, cyclonic shear and weak subtropical high, and vice versa; (4) The condensation heating centers, strong convection and water vapor flux divergence are well collocated with each other during ISO active period. In addition, the vertical profile of condensation heat indicates strong ascending motion and middle-level heating over the SCS during active period, and vice versa. Thus, the eastward propagation of tropical ISO is capable to modulate TCs activities by affecting the heating configuration over the SCS.  相似文献   

3.
不同海表面温度对南海台风“杜鹃”的影响试验   总被引:2,自引:0,他引:2  
采用水平分辨率0.25 °×0.25 °的日平均和周平均的卫星微波成像仪(TMI)和卫星微波辐射计(AMSRE)的海温资料(TMI-AMSRE SST)作为下强迫源,利用中尺度数值模式MM5对南海过境台风"杜鹃"进行了模拟.试验结果表明:台风中心附近SST的差异会导致大气风场的差异,从而使模式对SST有比较快速而且明显的响应;不同的SST对台风的强度和路径都有一定的影响,而对台风降水和台风中心附近潜热通量有明显的影响;不同SST对台风的影响主要是通过改变海-气潜热通量来实现的.  相似文献   

4.
南海暖池的季节和年际变化及其与南海季风爆发的关系   总被引:16,自引:3,他引:16  
用LEVITUS和NCEP/NCAR OISST资料,分析了南海暖池的季节和变化特征及其与西太平洋暖池和印度洋暖池的关系,讨论了南海暖池强度指数的年际变化与南海季风爆发时间的联系,结果指出,南海暖池有明显的季节变化牲,12~2月隆冬季节最弱,3~4月迅速发展北上,6~9月达其盛期,整个南海均为高于28℃的暖水,10~11月迅速减弱南退:在南海暖池盛期,整个南海均为高于28℃的暖水最大厚度达55m,  相似文献   

5.
The South China Sea warm pool interacts vigorously with the summer monsoon which is active in the region. However, there has not been a definition concerning the former warm pool which is as specific as that for the latter. The seasonal and inter-annual variability of the South China Sea warm pool and its relations to the South China Sea monsoon onset were analyzed using Levitus and NCEP/NCAR OISST data. The results show that, the seasonal variability of the South China Sea warm pool is obvious, which is weak in winter, develops rapidly in spring, becomes strong and extensive in summer and early autumn, and quickly decays from mid-autumn. The South China Sea warm pool is 55 m in thickness in the strongest period and its axis is oriented from southwest to northeast with the main section locating along the western offshore steep slope of northern Kalimantan-Palawan Island. For the warm pools in the South China Sea, west Pacific and Indian Ocean, the oscillation, which is within the same large scale air-sea coupling system, is periodic around 5 years. There are additional oscillations of about 2.5 years and simultaneous inter-annual variations for the latter two warm pools. The intensity of the South China Sea warm pool varies by a lag of about 5 months as compared to the west Pacific one. The result also indicates that the inter-annual variation of the intensity index is closely related with the onset time of the South China Sea monsoon. When the former is persistently warmer (colder) in preceding winter and spring, the monsoon in the South China Sea usually sets in on a later (earlier) date in early summer. The relation is associated with the activity of the high pressure over the sea in early summer. An oceanic background is given for the prediction of the South China Sea summer monsoon, though the mechanism through which the warm pool and eventually the monsoon are affected remains unclear.  相似文献   

6.
The characteristics of temporal and spatial distribution of tropical cyclone frequencies over the South China Sea areas and its affecting factors in the past 50yrs are analyzed based on typhoon data that provided by CMA and Simple Ocean Data Assimilation (SODA). The results show that the tropical cyclone frequencies from June to October show concentrated geographic distribution, for they mainly distribute over the SCS area from 15 - 20 °N. The characteristics present significant interdecadal changes. The impact of oceanic factors on the tropical cyclone frequencies in the SCS area is mainly realized by La Ni(n)a and La Ni(n)a-like events before 1975 but mainly by El Ni(n)o and El Nifo-like events after 1975.  相似文献   

7.
近50年南海热带气旋时空分布特征及其海洋影响因子   总被引:7,自引:9,他引:7  
用中国气象局组织整编的《台风年鉴》资料和全球近表层简易海洋数据同化(SODA)资料,研究了近50年南海海域生成和经过的热带气旋位置点频数的时空分布特征及其海洋影响因子。结果表明,6~10月的热带气旋位置点频数表现出明显的地理分布集聚性特征,主要分布在南海15~22°N海域,并有明显的年代际变化特征。在1975年以前,海洋因子对南海海域生成和经过的热带气旋位置点频数的影响主要以La Nia和类La Nia事件为主,1975年之后以El Nio和类El Nio事件为主。  相似文献   

8.
南海及其邻近地区夏季风爆发的特征及其机制的初步研究   总被引:29,自引:6,他引:29  
利用OLR和TBB资料,提出一个指标,确定了1975~1993年间南海夏季风爆发日期,发现与风向转变的日期比较一致。在此基础上,讨论了南海夏季风爆发的过程。随后,还讨论了南海夏季风爆发与海温异常、高原热状况和海陆温差变化的关系,发现它与4月份南海、东太平洋赤道以及30~40°NSSTA有关,与海陆温差由冬季的冷陆暖海转变到热陆冷海有关。  相似文献   

9.
The intraseasonal oscillation(ISO) of the South China Sea(SCS, 105-120°E, 5-20°N) convection and its influences on the genesis and track of the western North Pacific(WNP) tropical cyclones(TCs) were explored, based on the daily average of NCEP/NCAR reanalysis data, the OLR data and the western North Pacific tropical cyclone best-track data from 1979 to 2008. The mechanism of the influences of ISO on TC movement and the corresponding large-scale circulation were discussed by a trajectory model. It was found as follows.(1) During the SCS summer monsoon, the SCS convection exhibits the ISO features with active phases alternating with inactive phases. The monsoon circulation patterns are significantly different during these two phases. When the SCS convection is active(inactive), the SCS-WNP monsoon trough stretches eastward(retreats westward) due to the activity(inactivity) of SCS monsoon, and the WNP subtropical high retreats eastward(stretches westward), which enhances(suppresses) the monsoon circulation.(2) The amount of TC genesis in the active phase is much more than that in the inactive phase. A majority of TCs form west of 135 °E during the active phases but east of 135 °E in the inactive phases.(3) The TCs entering the area west of 135 °E and south of 25 °N would move straight into the SCS in the active phase, or recurve northward in the inactive phase.(4) Simulation results show that the steering flow associated with the active(inactive)phases is in favor of straight-moving(recurving) TCs. Meanwhile, the impacts of the locations of TC genesis on the characteristics of TC track cannot be ignored. TCs that occurred father westward are more likely to move straight into the SCS region.  相似文献   

10.
南海热带气旋路径集合预报试验   总被引:6,自引:14,他引:6  
利用3种不同模式的初始资料,通过它们生成得到16个不同的初始场,分别对2004年南海及其周边地区9个热带气旋个例进行集合预报试验,最后筛选得到了7个南海热带气旋初值集合成员,由此初步探讨了南海热带气旋初值集合成员的生成方法。结果表明,采用不同模式的初始资料生成得到初值集合成员的方法用于集合预报,对南海热带气旋路径预报有一些明显的改进。  相似文献   

11.
南海低压倾斜结构的特征分析   总被引:3,自引:0,他引:3  
南海低压的中心的垂直方向上常发生倾斜,高低层的环流中心出现明显错位。如果预报员只关注卫星云图的云团动态,往往会得到低压中层环流中心的错误信息,使预报失败。因此对南海低压的预报更需要关注其低层环流的动态,特别在云团或风速极不对称致使低压环流可能出现转向时,或靠近陆地时都会出现云团和低层环流明显的倾斜,使南海低压的路径(特别是靠岸时)更复杂多变,需要谨慎分析各种资料信息,综合判断才能作出准确的预报。本文的工作旨在为南海低压的预报提供一些经验参考。  相似文献   

12.
Conclusions are divided regarding the role of the variations of thermodynamics in the monsoon activity for the South China Sea region. In this study, primary eigenvectors are studied for the SSTA from East Asia to the tropical eastern Indian Ocean in May. The results show that temperature anomalies that center on Sumatra are closely related with the outbreak of the South China Sea monsoon. When the SST is warmer (cooler) than average year, it is likely that the monsoon set in late (early). It may be caused by the changes in meridional difference in thermodynamics between the Indochina Peninsula and its southern tropical oceans. Studying the temporal and spatial evolution of primary eigenvector distribution of the SSTA in the South China Sea-tropical eastern Indian Ocean from winter to summer, we find that the temperature anomalies that center around Sumatra in late spring and early summer can be traced back to the variations of the SST fields in the South China Sea in the preceding winter. Being well associated with the outbreak of the South China Sea monsoon, the latter is a signifi-cant index for it. The work helps understanding the atmospheric and oceanic background against which the South China Sea monsoon breaks out and behaves.  相似文献   

13.
利用云分辨天气研究和预报模式(CR-WRF)模拟在清洁大气和污染大气下,气溶胶的云凝结核作用对不同强度南海热带气旋(TC)的强度变化影响,对比分析了动力结构和微物理结构的变化。(1)在污染大气环境中,更多气溶胶能进入到弱TC内部云带区,并充当凝结核作用,TC内部各相态水凝物含量都有明显增多,释放潜热有利于TC内部的对流发展,弱TC中心海平面气压下降,强度加强。(2)在污染大气环境中,气溶胶主要影响强TC的外部螺旋云带区;外部云带区各相态水凝物增多,释放潜热有利于该处对流的发展;外部云带区对流与云墙区内对流形成竞争,导致入流减弱,云墙区内上升运动减弱,强TC中心海平面气压上升,强度减弱。  相似文献   

14.
Using 1975-1993 (with 1978 missing) data of the outgoing longwave radiation (OLR), characteristics of seasonal variation of low-frequency oscillations in the South China Sea and its relation to the establishment and activity of the summer monsoon there are studied. As is shown in the result, the low-frequency oscillation in the South China Sea is much stronger in the period of summer monsoon than in that of winter monsoon and the summer monsoon there usually begins to set up in a negative phase of the first significant low-frequency oscillation for the early summer. The study also reveals that the circulation for the low-frequency oscillation during the summer monsoon in the Sea is embodied as north-south fluctuations of the ITCZ and east-west shifts of western ridge point of the West Pacific subtropical high, suggesting close correlation between the low-frequency oscillation and the active and break (decay) of the South China Sea monsoon. In the meantime. the work illustrates how the low-frequency oscillation in the South China Sea are superimposed with the seasonal variation of the general circulation. so that the summer inonsoon covers the establishment of the Ist, intensification of the 2nd and 3rd the low-frequency oscillations and decay of the 4th oscillation.  相似文献   

15.
南海—西太平洋地区ITCZ气候学特征的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文利用1965—1984年6—9月逐日08时850hPa历史天气图上分析的ITCZ,统计出ITCZ频数分布图,研究了南海—西太平洋地区ITCZ的气候特性和季节性进退,揭示了ITCZ具有与副热带高压同步北跳现象和频数突增现象。发现:西太平洋上的ITCZ容易在12°N和20°N附近形成和维持,使ITCZ频数图上出现南、北两个多频带.这一分支现象与热带低层赤道西风和高层热带东风的分支现象密切相关。由于ITCZ存在着活跃与间歇的低频振荡,加上海陆、地形和热带气旋活动的影响,以及ITCE的结构特点,因而月平均多云带和最小OLR轴位置比流场ITCZ显著偏南,而且在南海地区出现偏离季风槽而沿地形槽的走向.对比分析表明,用OLR标准差与平均值之比值X来表征ITCZ的位置可能比直接用最小OLR轴更合理.  相似文献   

16.
温度,盐度和风应力对南海海流模拟的影响   总被引:1,自引:0,他引:1  
用美国普林斯顿大学海洋模式(POM)对南中国海的年平均海流进行了数值模拟,对温盐结构和风应力在海流形成中的作用进行了较详细的讨论。结果表明,仅有温盐水平不均匀分布也可以驱动海水而生成南海海流,但此种海流的结构较乱,最大流速只有30~40cm·s-1。若温盐无水平结构,则在风应力驱动下,南海海流的结构较为有序,且最大流速可增至60~70cm·s-1。在温盐水平分布不均匀并有风应力的作用时,生成的南海海流与仅有风应力作用时的海流场较相似,说明在南海海流的形成中,风应力的作用更为重要。海面自由高度的分析也证明了上述结论。  相似文献   

17.
This paper proposes a method for predicting the development of tropical disturbance over the South China Sea(SCS)based on the total latent heat release(TLHR)derived from the Special Sensor Microwave/Imager(SSM/I)satellite observations.A threshold value of daily mean TLHR(3×1014 W)for distinguishing the non-developing and developing tropical disturbances is obtained based on the analysis for 25 developing and 43 non-developing tropical disturbances over the SCS during 2000 to 2005.If the mean TLHR within 500 km of a disturbance on the latest day and its daily mean TLHR during previous life are both greater than 3×1014 W,the disturbance will be a developing one in the future.Otherwise,it is a non-developing one.A real-time testing prediction of tropical cyclogenesis over the SCS was conducted for the years 2007 and 2008 using this threshold value of TLHR.We find that the method is successful in detecting the development of 80%of all tropical disturbances over the SCS in 2007 and 2008.  相似文献   

18.
对南海季风进退及强度的气候分析   总被引:5,自引:0,他引:5       下载免费PDF全文
根据南海及其附近地区的海面和高空气象资料,计算了南海的季风指数分布和月、季变化,并根据低空流场分析了季风的来源和进退趋势,对季风的推进路径和强度变化作了讨论。结果表明:南海夏季风首先出现于泰国湾,然后由西南向东北扩展,最早影响南海的夏季风是来自副热带高压南侧的东南气流,其后是通过90°E、105°E附近的越赤道气流;在南海夏季风盛行后,印度季风才并入。对冬季风的强度、厚度和影响范围,也进行了较详尽的分析。  相似文献   

19.
利用NCEP再分析资料及我国160站降水资料,分析了2009年秋季东亚中、低纬环流特征和水汽输送特征及其对西南干旱的影响。同时讨论了秋季不同ENSO状态下东亚地区水汽输送差异,并与2009年进行比较。结果表明:孟加拉湾(简称孟湾)和南海之间环流形势在2009年秋季发生不对称变化,造成两地上空气压梯度减小,孟湾和南海上空分别出现一个反气旋式和气旋式距平环流中心,我国西南至中南半岛处于两距平环流中心之间偏北距平风控制之下,使得进入我国的西南气流异常减弱。水汽输送随之出现变化,南海南部季风低压水汽环流圈异常偏强,孟湾和南海水汽主体经中南半岛重回南海而未进入我国,最终造成我国西南降水异常偏少,出现干旱。这段时间内,西南地区上空出现异常下沉运动,对流活动受到抑制,加剧了干旱程度。在El Ni o年,我国西南及江南地区秋季水汽通量比La Ni a年明显增大,西北及华北则减少。2009年秋季我国的降水分布及南海一带水汽输送特征与普通El Ni o年特征不符,甚至出现相反状态,经对2009年秋季东亚El Ni o影响特征作简单模拟还原和分析,认为上述差异可能与El Ni o反气旋环流影响位置偏北有关。  相似文献   

20.
The impact of strong (weak) intraseasonal oscillation (ISO) over South China Sea (SCS) and South Asia (SA) in summer on the SCS and SA summer monsoon and the summer rainfall in Eastern China are studied by using the NCEP-NCAR analysis data and the rainfall data of 160 stations in China from 1961 to 2010. It is found that the impacts are significantly different in different months of summer. The study shows that in June and July cyclonic (anticyclonic) atmospheric circulation over SCS and SA corresponds to strong (weak) ISO over SCS. In August, however, strong (weak) ISO over SCS still corresponds to cyclonic (anticyclonic) atmospheric circulation over SA. In June and August cyclonic (anticyclonic) atmospheric circulation over South Asia corresponds to strong (weak) ISO over SA while a strong (weak) ISO corresponds to anticyclonic (cyclonic) atmospheric circulation over SA in July. Besides, in June the strong (weak) ISO over SA corresponds to cyclonic (anticyclonic) atmospheric circulation over SCS, while in July and August the atmospheric circulation is in the same phase regardless of whether the ISO over SA is strong or weak. The impacts of the strong(weak)ISO over SCS on the rainfall of eastern China are similar in June and July, which favors less (more) rainfall in Yangtze-Huaihe Rivers basin but sufficient (deficient) rainfall in the south of Yangtze River. However, the impacts are not so apparent in August. In South Asia, the strong (weak) ISO in July results in less (more) rainfall in the south of Yangtze River but sufficient (deficient) rainfall in Yangtze-Huaihe Rivers basin. The influence on the rainfall in eastern China in June and August is not as significant as in July.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号