首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Numerical simulation on the flow,heat transfer and cracking reactions in commercial fluid catalyticcracking(FCC)riser reactors were carried out employing the developed turbulent gas-solid two-phase flow-reac-tion model for FCC riser reactors given in Part Ⅰ of the present paper.Detailed information about the turbulentflow fields in the riser reactor obtained revealed the basic characteristics of the gas-solid two-phase turbulentflows when heat transfer and catalytic cracking reactions were co-existing in the riser.Results showed that thedistributions of the flow,the turbulence kinetic energy and the catalyst particle concentration are not uniform inthe axial,radial and tangential directions.The most complicated part of the riser reactor is the feed injectingzone.The complicated configuration of the turbulent gas-solid two-phase flows would exert a great influence onthe results of interphase heat transfer and cracking reactions.  相似文献   

2.
Numerical simulation on the flow, heat transfer and cracking reactions in commercial fluid catalytic cracking(FCC)riser reactors were carried out employingthe developed turbulent gas-solid two-phase flow-reaction model for FCC riser reactors given in Part Ⅰ of thepresent paper.Detailed information about the turbulentflow fields in the riser reactor obtained revealed the basic characteristics of the gas-solid two-phase turbulent flows when heat transfer and catalytic cracking reactions were co-existing in the riser. Results showed that the distributions of the flow, the turbulence kinetic energy and the catalyst particle concentration arenot uniform in the axial, radial and tangential directions. The most complicated part of the riser reactor is the feed injecting zone. The complicated configuration of the turbulent gas-solid two-phase flows would exert a great influence on the results of interphase heat transfer and cracking reactions.  相似文献   

3.
The numerical studies of water–oil two-phase slug flow inside a two-dimensional vertical microchannel subjected to modulated wall temperature boundary conditions have been discussed in the present paper. Many researchers have contributed their efforts in exploring the characteristics of Taylor flows inside microchannel under constant wall heat flux or isothermal wall conditions. However, there is no study available in the literature which discusses the impact of modulated thermal wall boundary conditions on the heat transfer behavior of slug flows inside microchannels. Hence, to bridge this gap, an effort has been made to understand the heat transfer characteristics of the flow under sinusoidal wall temperature conditions. Initially, a single phase flow and heat transfer study was performed in microchannels, and the results of the fully developed velocity profile and heat transfer rate were validated with benchmark analytical results. Then an optimal selection of the combination of sinusoidal thermal wall boundary conditions has been made for the two-phase slug flow study. Later, the effects of amplitude(0 b ε b 0.03) and frequency(0 b ω b 750π rad·s~(-1)) of the sinusoidal wall temperature profile on the heat transfer have been studied using the optimal combination of the wall boundary conditions. The results of the numerical study using modulated temperature conditions on channel walls showed a significant improvement in the heat transfer over liquid-only flow by approximately 50% as well as over two-phase flow without wall temperature modulation. The non-dimensional temperature contours obtained for different cases of temperature modulation clearly explain the root cause of such improvement in the heat transfer. Besides,the results based on the hydrodynamics of the flow have also been reported in terms of variation of droplet shapes and film thickness. The influence of Capillary number on the film thickness as well as heat transfer rates has also been discussed. In addition, the measured film thickness has also been compared with that calculated using standard empirical and analytical models available in the literature. The heat transfer rate obtained from the numerical study for the case of unmodulated wall temperature was found to be in a close match with a phenomenological model to evaluate slug flow heat transfer having a mean absolute deviation of 7.56%.  相似文献   

4.
Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.  相似文献   

5.
In this research, laminar flow and heat transfer of two-phase water/Ag nanofluid with 0–6% volume fraction of nanoparticles at Re = 150–700 in a curved geometry are simulated using finite volume method. Studied geometry is an elliptical curved minichannel with curvature angle of 180°. Forced and natural flow of two-phase nanofluid is simulated at Gr = 15000, 35000 and 75000. For estimation of nanofluid flow behavior, two-phase mixture method is used. The second-order discretization and SIMPLEC algorithm are used for solving governing equations. The results indicate that the increase of volume fraction of nanoparticles leads to the enhancement of the temperature of central line of flow. The increase of Grashof number(Gr ~75000) has a great effect on reduction of dimensionless temperature in central line of flow. Creation of thermal boundary layer at Re = 500 and after the angle of 30° becomes significant. In low Grashof numbers(Gr ~15000), due to the great effects of temperature gradients close to wall, these regions have significant entropy generation.  相似文献   

6.
Gas-solid two-phase turbulent flows, mass transfer, heat transfer and catalytic cracking reactions are known to exert interrelated influences in commercial fluid catalytic cracking(FCC) riser reactors.In the present paper, a three-dimensional turbulent gas-solid two-phase flow-reaction model for FCC riser reactors was developed. The model took into account the gas- solid two-phase turbulent flows, inter-phase heat transfer, mass transfer, catalytic cracking reactions and their nterrelated influence. The k-V-kp two-phase turbulence model was employed and modified for the two-phase turbulent flow patterns with relatively high particle concentration. Boundary conditions for the flow-reaction model were given. Related numerical algorithm was formed and a numerical code was drawn up. Numerical modeling for commercial FCC riser reactors could be carried out with the presented model.  相似文献   

7.
1 INTRODUCTIONClosed thermosyphon has been developed to enhance heat transfer and recover wasteheat in various process industries [1,2].Stimulated by this success,a new type oftwo-phase closed thermosyphon was designed by inserting respectively two inner tubesinto the thermosyphon,one in the boiling section and the other in the condensing sec-tion.The two-phase flow boiling heat transfer coefficient was calculated successfully onthe basis of Chen's dual-mechanism [3].A boiling heat transfer model for thetwo-phase closed thermosyphon with an inner tube in the boiling section was pro-  相似文献   

8.
Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems. At present, few researches on the mass transfer property of annular flow have been reported. Therefore, the mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device are studied in the present study. We find that the main factors, i.e., flow pattern, liquid film thickness, liquid hydraulic retention time...  相似文献   

9.
The objective of this study was to establish the thermal characteristics of the lauric acid (95% purity) as a latent heat storage material filled in the annulus of vertical concentric double pipe during its melting process. The temperature data were used to determine the thermal characteristics, including the temporal temperature variations and the effects of the mass flow rate and the inlet temperature of the heat transfer fluid on the heat transfer coefficient and the heat charging fraction during the melting process. The results indicated that the time to reach to heat charging fraction of 1.0 could be altered by changing the mass flow rate and the inlet temperature of the heat transfer fluid.  相似文献   

10.
一串上升气泡周围流体的湍动特性(英文)   总被引:1,自引:0,他引:1  
The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate the turbulent characteristic of fluid induced by a chain of bubbles rising in Newtonian and non-Newtonian fluids. The instantaneous flow field, turbulent kinetic energy (TKE) and TKE dissipation rate were measured. The results demonstrated that the TKE profiles were almost symmetrical along the column center and showed higher values in the central region of the column. The TKE was enhanced with the increase of gas flow and decrease of liquid viscosity. The maximum TKE dissipation rate appeared on both sides of the bubble chain, and increased with the increase of gas flow rate or liquid viscosity. These results provide an understanding for gas-liquid mass transfer in non-Newtonian fluids.  相似文献   

11.
吴鹏飞  王科  赵珏 《化工学报》2020,71(7):3042-3049
实验研究了板壳式换热器波纹通道内垂直向上气-液两相流动的流型和压降特性,讨论了圆形波纹通道内流型特征及转变机理,根据相界面形态特征将流型划分为泡状流、弹状流、膜状流和搅混流;同时分析了流型与压降之间的关系,发现泡状流中的压降波动幅值最小,弹状流与膜状流次之,搅混流中压降波动幅值最大;获得了波纹通道内单相以及气-液两相压降的分布规律,拟合了单相压降关联式,并基于Lockhart-Martinelli理论,通过分析两相摩阻系数与Martinelli参数的关系拟合了波纹通道内两相流动压降关联式,发现Chisholm参数C的值与Chisholm最初建议的光滑管内层流-层流的值接近。  相似文献   

12.
邵怀爽  马海东  陈杰  时明伟  胡涛  赵钦新 《化工学报》2016,67(10):4118-4125
通过搭建可视化分体管壳式余热锅炉实验平台,对其下部管壳内汽液两相横向冲刷水平管束时摩擦及局部压降的计算进行了研究。在测量竖直上升管内截面含汽率时,将粒子图像测速(PIV)技术与传统压差法相结合,针对上升管中出现的泡状流型,给出了计算截面含汽率的新方法;在竖直上升管内定义了一种泡状-段塞流的新流型,并分析得出将质量含汽率x=10-4作为区分泡状流与泡状-段塞流的边界。根据汽液两相横向冲刷管束时摩擦压降与局部压降类似的产生规律,将两者作为整体分析,通过借鉴Chisholm计算方法对实验数据进行处理,重点对汽液两相横向冲刷管束时摩擦及局部压降的计算进行研究,得到了可用于计算摩擦及局部压降的关联式。对所得实验数据验证计算后发现,误差在±20%以内,能够较好地满足工程计算需要。  相似文献   

13.
洪文鹏  滕飞宇  刘燕 《化工机械》2012,39(2):124-130
综述了气液两相流体横掠水平管束流动特性的最新进展。对先前研究气液两相流体向上、向下流过顺列和错列管束时的含气率、流型和压降特性进行了归纳和分析,详细介绍了绝热条件下基于实验结果建立的流型图、预测含气率和摩擦压降的半经验公式以及各种预测方法的差异。最后,表明发展数据和建立模型仍是绕流研究的重点。  相似文献   

14.
高亦普  刘振华 《化工学报》2007,58(8):1943-1947
研究了在内径为1.6 mm的水平玻璃毛细管圆管内的氮气-氧化铜水基纳米流体的两相流流型分布图, 实验气体是氮气,实验液体是由去离子水、氧化铜纳米颗粒和十二烷基苯磺酸钠(SDBS)组成的悬浮液。首先对氮气-去离子水在水平毛细管内的两相流流型图进行了实验研究,将实验结果与前人提出的应用于常规管的半理论半经验公式进行了比较。然后在水中添加不同比容积的SDBS和氧化铜纳米颗粒制备成纳米流体,对纳米流体在水平毛细管内气液两相流的流型图进行了研究。结果表明,使用纳米流体后,毛细管内的分层波动流区域显著增加。纳米流体对两相流流型的影响主要是由添加表面扩散剂和纳米颗粒后降低了溶液表面张力产生的。纳米流体中的纳米颗粒和表面扩散剂浓度对流型图几乎无影响。  相似文献   

15.
纵向折流板垂直放置对壳侧两相流流型的影响   总被引:3,自引:0,他引:3  
用空气-柴油对TEMA-F型管壳式换热器模型在纵向折流板垂直放置下进行试验,得出相应的流型图和流型转变边界方程。研究表明,纵向折流板垂直放置时的流型图与纵向折流板水平放置时有较大差别。文内对纵向折流板放置位置对流型影响的机理作出了分析和解释。  相似文献   

16.
水平管泡状流相分布特性   总被引:3,自引:1,他引:2       下载免费PDF全文
<正>气液两相泡状流的主要特征是连续液相中携带散布其中的细小气泡,气泡的存在不仅对气液两相流的传热、传质及阻力特性有很大的影响,而且对两相流动的稳定性也有很大的影响.前人有关泡状流的研究大多偏重于两相流的平均参数,对于两相流局部统计参数如局部空隙率等参数的变化规律是近年来两相流研究的新趋势.对于垂直管内的流动已经积累了相当数量的数据,而同样有广泛应用的水平管内相分布规律还知之甚少.气泡对气液两相流的传热、传质及流动结构影响机理的研究必须以了解相分布及气泡的局部统计参数为前提,同时对相分布特性的深人研究也为气液两相流的数学模型化提供实验依据.本文以空气、水为工质,研究水平管内气液两相流的相分布特性,给出了典型泡状流的时域信号图,研究了相分布随气液两相流量的规律变化,并与前人的有关结果进行了比较.  相似文献   

17.
Three-sphase flow invo1ving oil-water two immiscible liquids and gas which is often foundin the fields of petroleum production has been studied in this paper.A new method with thecombination of a horizontal tube,a downward flow vertica1 tube and an orifice to measure theflowrates is presented.In this method the frictional pressure drop in the downward vertical tube isreplaced by that in the horizontal tube,the void fraction is derived from the gravitational pressuredrop,then the volume fraction of the individual phase can also be obtained.The individual flowratescan be calculated when the water fraction is known.This method is applicable for many kinds ofoil-wells to measure the flowrates of crude oil,natural gas and water.Compared with other methods,the presented method involves fewer measuring parameters.The experimental results proved quitegood accuracy of the method,with measurement deviation within 10%,and reliable results wereobtained under high Dressure conditions.  相似文献   

18.
本文所提出的联合传热模型的管道倾斜范围为-90°到+90°。联合传热模型所需的参数由Zhang等人提出的气液混输管道联合水动力学模型计算得到。用本模型计算管道内的对流换热系数与实验得到的对流换热系数相一致。  相似文献   

19.
马晓旭  田茂诚 《化工学报》2018,69(5):1972-1981
对空气-水两相流在内径16 mm、弯曲半径100 mm的横向U形弯头单元内向上流动时的流型进行了实验研究。利用流动可视化技术及其相应压降波动规律实现了流型的客观识别。总结了不同流型的压降波动特性并据此提出了定量识别流型的新方法。实验范围内发现了分层-搅拌流、塞状-泡状流、段塞-波形流、环状-波形流和环状弥散流等5种与水平直管和垂直直管不同的流型。相比标准偏差,压降波动的功率谱(PSD)分布能更好地反映U形弯头单元内不同流型的流态演变特征与动力学特性。PSD分布的偏度或峰度与气液表观流速比的结合可以定量客观地识别U形弯头单元内的流型,流型转变时的气液表观流速比为1和13。  相似文献   

20.
The present work has attempted to identify the flow patterns during liquid-liquid two phase flow through a vertical pipe. Dyed kerosene and water have been selected as the test fluids. The measurements have been made for phase velocities varying from 0.05 to 1.5 m/s for both the liquids. The conductivity probe technique has been adopted and three different probe designs have been used to identify the patterns under different flow conditions. A parallel wire type probe traversing the entire cross-section along a diametral plane has indicated the existence of bubbly flow at low phase flow rates and dispersed bubbly flow at high velocities of water. Apart from the visual appearance of the signals, different statistical analysis namely the probability density function and wavelet analysis have been performed for a better appraisal of the flow situation. The information in the PDFs have been quantified by means of the statistical moments. The existence of the core-annular flow at high kerosene and low water velocities has been confirmed from measurements using a different probe design. The intermediate region between the bubbly and annular flow patterns is characterized by a random distribution of the two liquids with continually changing interface between them. This has been named as the churn turbulent flow pattern. The information thus obtained has been represented in the form of a flow pattern map.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号