首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the zero-temperature behavior of a disordered array of quantum rotators given by the finite-volume Hamiltonian: $$H_\Lambda = - \mathop \Sigma \limits_{x \in \Lambda } \frac{{h(x)}}{2}\frac{{\partial ^2 }}{{\partial \varphi (x)^2 }} - J\mathop \Sigma \limits_{\left\langle {x,y} \right\rangle \in \Lambda } \cos (\varphi (x) - \varphi (y))$$ , wherex,yZ d , 〈,〉 denotes nearest neighbors inZ d ;J>0 andh={h(x)>0,xZ d } are independent identically distributed random variables with common distributiondμ(h), satisfying ∫h dμ(h)<∞ for some δ>0. We prove that for anym>0 it is possible to chooseJ(m) sufficiently small such that, if 0<J<J(m), for almost every choice ofh and everyxZ d the ground state correlation function satisfies $$\left\langle {\cos (\varphi (x) - \varphi (y))} \right\rangle \leqq C_{x,h,J} e^{ - m\left| {x - y} \right|} $$ for allyZ d withC x,h,J <∞.  相似文献   

2.
The aim of this paper is to prove that ifV is a strictly convex potential with quadratic behavior at ∞, then the quotient μ21 between the largest eigenvalue and the second eigenvalue of the Kac operator defined on L2(? m ) by exp ?V(x)/2 · exp Δx · exp ?V(x)/2 where Δx is the Laplacian on ? m satisfies the condition: $${{\mu _2 } \mathord{\left/ {\vphantom {{\mu _2 } {\mu _1 {{ \leqslant \exp - \cosh ^{ - 1} (\sigma + 1)} \mathord{\left/ {\vphantom {{ \leqslant \exp - \cosh ^{ - 1} (\sigma + 1)} {2,}}} \right. \kern-\nulldelimiterspace} {2,}}}}} \right. \kern-\nulldelimiterspace} {\mu _1 {{ \leqslant \exp - \cosh ^{ - 1} (\sigma + 1)} \mathord{\left/ {\vphantom {{ \leqslant \exp - \cosh ^{ - 1} (\sigma + 1)} {2,}}} \right. \kern-\nulldelimiterspace} {2,}}}}$$ where σ is such that HessV(x)≥σ>0.  相似文献   

3.
We consider the time-dependent Schrödinger-Hartree equation (1) $$iu_t + \Delta u = \left( {\frac{1}{r}*|u|^2 } \right)u + \lambda \frac{u}{r},(t, x) \in \mathbb{R} \times \mathbb{R}^3 ,$$ (2) $$u(0,x) = \phi (x) \in \Sigma ^{2,2} ,x \in \mathbb{R}^3 ,$$ where λ≧0 and \(\Sigma ^{2,2} = \{ g \in L^2 ;\parallel g\parallel _{\Sigma ^{2,2} }^2 = \sum\limits_{|a| \leqq 2} {\parallel D^a g\parallel _2^2 + \sum\limits_{|\beta | \leqq 2} {\parallel x^\beta g\parallel _2^2< \infty } } \} \) . We show that there exists a unique global solutionu of (1) and (2) such that $$u \in C(\mathbb{R};H^{1,2} ) \cap L^\infty (\mathbb{R};H^{2,2} ) \cap L_{loc}^\infty (\mathbb{R};\Sigma ^{2,2} )$$ with $$u \in L^\infty (\mathbb{R};L^2 ).$$ Furthermore, we show thatu has the following estimates: $$\parallel u(t)\parallel _{2,2} \leqq C,a.c. t \in \mathbb{R},$$ and $$\parallel u(t)\parallel _\infty \leqq C(1 + |t|)^{ - 1/2} ,a.e. t \in \mathbb{R}.$$   相似文献   

4.
The wave and scattering operators for the equation $$\left( {\square + m^2 } \right)\varphi + \lambda \varphi ^2 = 0$$ withm>0 and λ>0 on four-dimensional Minkowski space are analytic on the space of finite-energy Cauchy data, i.e.L 2 1 (R 3)⊕L 2(R 3).  相似文献   

5.
Using the formfactors which are entire analytic functions in a momentum space, nonlocality is introduced for a wide class of interaction Lagrangians in the quantum theory of one-component scalar field φ(x). We point out a regularization procedure which possesses the following features:
  1. The regularizedS δ matrix is defined and there exists the limit $$\mathop {\lim }\limits_{\delta \to 0} S^\delta = S.$$
  2. The Green positive-frequency functions which determine the operation of multiplication in \(S \cdot S^ + \mathop = \limits_{Df} S \circledast S^ + \) can be also regularized ?δ and there exists the limit $$\mathop {\lim }\limits_{\delta \to 0} \circledast ^\delta = \circledast \equiv .$$
  3. The operator \(J(\delta _1 ,\delta _2 ,\delta _3 ) = S^{\delta _1 } \circledast ^{\delta _2 } S^{\delta _3 + } \) is continuous at the point δ123=0.
  4. $$S^\delta \circledast ^\delta S^{\delta + } \equiv 1at\delta > 0.$$ Consequently, theS-matrix is unitary, i.e. $$S \circledast S^ + = S \cdot S^ + = 1.$$
  相似文献   

6.
We consider the local perturbation $$V = \varepsilon \sum\limits_{x,y \in \mathbb{Z}^v } {V(x,y)\chi _\Omega (x)\chi _\Omega (y)a * (x)a * (y)a(y)a(x)} $$ of the ideal Fermi-gas on the lattice ? v , where Ω is a finite subset of ? v and χΩ is its indicator. The invertibility of Möller morphisms for small ? is proven. It follows that in the cyclic GNS representation with respect to KMS states the dynamics of ideal and locally perturbed Fermi-gas are unitary equivalent.  相似文献   

7.
New bounds are given for the L2-norm of the solution of the Kuramoto-Sivashinsky equation $$\partial _t U(x,t) = - (\partial _x^2 + \partial _x^4 )U(x,t) - U(x,t)\partial _x U(x,t)$$ , for initial data which are periodic with periodL. There is no requirement on the antisymmetry of the initial data. The result is $$\mathop {\lim \sup }\limits_{t \to \infty } \left\| {U( \cdot ,t)} \right\|_2 \leqslant const. L^{8/5} $$ .  相似文献   

8.
Bounds are obtained on the unintegrated density of states ρ(E) of random Schrödinger operatorsH=?Δ + V acting onL 2(? d ) orl 2(? d ). In both cases the random potential is $$V: = \sum\limits_{y \in \mathbb{Z}^d } {V_y \chi (\Lambda (y))}$$ in which the \(\left\{ {V_y } \right\}_{y \in \mathbb{Z}^d }\) areIID random variables with densityf. The χ denotes indicator function, and in the continuum case the \(\left\{ {\Lambda (y)} \right\}_{y \in \mathbb{Z}^d }\) are cells of unit dimensions centered ony∈? d . In the finite-difference case Λ(y) denotes the sitey∈? d itself. Under the assumptionf ∈ L 0 1+? (?) it is proven that in the finitedifference casep ∈ L (?), and that in thed= 1 continuum casep ∈ L loc (?).  相似文献   

9.
The hyperfine structure (hfs) of the metastable atomic states 3d64s6 D 1/2, 3/2, 5/2, 7/2, 9/2 of55Mn was measured using theABMR- LIRF method (atomicbeammagneticresonance, detected bylaserinducedresonancefluorescence). The hfs constantsA andB, corrected for second order hfs perturbations, could be derived from these measurements. The theoretical interpretation of these correctedA- andB-factors was performed in the intermediate coupling scheme taking into account the configurations 3d 54s 2, 3d 64s and 3d 7. Examining the influence of the composition of the eigenvectors on the hfs parameters \(\left\langle {r^{ - 3} } \right\rangle ^{k_s k_l } \) it was found, that for the configuration 3d 64s the two-body magnetic interaction should be considered in the calculation of the eigenvectors. Investigating second order electrostatic configuration interactions and relativistic effects and using calculated relativistic correction factors we obtained for the nuclear quadrupole moment of the nucleus55Mn a value ofQ=0.33(1) barn, which is not perturbed by a shielding or antishielding Sternheimer factor. The following hfs constants have been obtained: $$\begin{gathered} A\left( {{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \right) = 882.056\left( {12} \right)MHz \hfill \\ A\left( {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \right) = 469.391\left( 7 \right)MHzB\left( {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \right) = - 65.091\left( {50} \right)MHz \hfill \\ A\left( {{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-\nulldelimiterspace} 2}} \right) = 436.715\left( 3 \right)MHzB\left( {{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-\nulldelimiterspace} 2}} \right) = - 46.769\left( {30} \right)MHz \hfill \\ A\left( {{7 \mathord{\left/ {\vphantom {7 2}} \right. \kern-\nulldelimiterspace} 2}} \right) = 458.930\left( 3 \right)MHzB\left( {{7 \mathord{\left/ {\vphantom {7 2}} \right. \kern-\nulldelimiterspace} 2}} \right) = 21.701\left( {40} \right)MHz \hfill \\ A\left( {{9 \mathord{\left/ {\vphantom {9 2}} \right. \kern-\nulldelimiterspace} 2}} \right) = 510.308\left( 8 \right)MHzB\left( {{9 \mathord{\left/ {\vphantom {9 2}} \right. \kern-\nulldelimiterspace} 2}} \right) = 132.200\left( {120} \right)MHz \hfill \\ \end{gathered} $$   相似文献   

10.
In this paper, we consider the spread-out oriented bond percolation models inZ d ×Z withd>4 and the nearest-neighbor oriented bond percolation model in sufficiently high dimensions. Let η n ,n=1, 2, ..., be the random measures defined onR d by $$\eta _n (A) = \sum\limits_{x \in Z^d } {1_A (x/\sqrt n )1_{\{ (0,0) \to (x,n)\} } } $$ The mean of η n , denoted by $\bar \eta _n $ , is the measure defined by $$\bar \eta _n (A) = E_p [\eta _n (A)]$$ We use the lace expansion method to show that the sequence of probability measures $[\bar \eta _n (R^d )]^{ - 1} \bar \eta _n $ converges weakly to a Gaussian limit asn→∞ for everyp in the subcritical regime as well as the critical regime of these percolation models. Also we show that for these models the parallel correlation length $\xi (p)~|p_c - p|^{ - 1} $ asp?pc  相似文献   

11.
We study the large time asymptotic behavior of solutions to the Kadomtsev–Petviashvili equations $$\left\{\begin{array}{ll} u_{t} + u_{xxx} + \sigma \partial_{x}^{-1}u_{yy} = -\partial_{x}u^{2}, \quad \quad (x, y) \in {\bf R}^{2}, t \in {\bf R},\\ u(0, x, y) = u_{0}( x, y), \, \quad \quad \qquad \qquad (x, y) \in {\bf R}^{2},\end{array}\right.$$ where σ = ±1 and \({\partial_{x}^{-1} = \int_{-\infty}^{x}dx^{\prime} }\) . We prove that the large time asymptotics of the derivative u x of the solution has a quasilinear character.  相似文献   

12.
The extension of the tensor potentialS 12 V T (r) to the case of a nonlocal interaction is shown to be $$\begin{gathered} V_T (r{\text{,}}r'{\text{) = }}S_{12}^N F(r,r') \hfill \\ {\text{ = }}\tfrac{{\text{1}}}{{\text{2}}}[9(\rho \cdot \rho '{\text{)(}}\sigma _1 \cdot \rho \sigma _2 \cdot \rho '{\text{ + }}\sigma _1 \cdot \rho '\sigma _2 \cdot \rho {\text{)}} - 2(\sigma _1 \cdot \sigma _2 )]F(r,r'), \hfill \\ \end{gathered}$$ where ρ=r/r. This potential has the necessary invariance properties provided thatF(r, r′)=F(r′, r). With this potential andF(r, r′) taken to have a rank-one separable form, the behaviour of the model-deuteron radius with respect to the strength of the tensor nonlocality is investigated. It is found that the model radius decreases as the tensor nonlocality becomes more attractive. This is consistent with recent work which considers only central nonlocality.  相似文献   

13.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

14.
The identity $$\sum\limits_{v = 0} {\left( {\begin{array}{*{20}c} {n + 1} \\ v \\ \end{array} } \right)\left[ {\left( {\begin{array}{*{20}c} {n - v} \\ v \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {n - v} \\ {v - 1} \\ \end{array} } \right)} \right] = ( - 1)^n } $$ is proved and, by means of it, the coefficients of the decomposition ofD 1 n into irreducible representations are found. It holds: ifD 1 n \(\mathop {\sum ^n }\limits_{m = 0} A_{nm} D_m \) , then $$A_{nm} = \mathop \sum \limits_{\lambda = 0} \left( {\begin{array}{*{20}c} n \\ \lambda \\ \end{array} } \right)\left[ {\left( {\begin{array}{*{20}c} \lambda \\ {n - m - \lambda } \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} \lambda \\ {n - m - \lambda - 1} \\ \end{array} } \right)} \right].$$   相似文献   

15.
It is shown that the basic electrodynamical conservation laws are unaffected by the presence in free space of the photomagneton of light, $\hat B^{\left( 3 \right)} = B^{\left( 0 \right)} \hat J/\rlap{--} h$ , the fundamental photon property responsible for magnetization by light. The expectation value $B^{\left( 3 \right)} = \left\langle {\hat B^{\left( 3 \right)} } \right\rangle $ does not affect the Poynting vector, so that it does not contribute to electromagnetic flux density. The electromagnetic energy density can be expressed in terms ofB (3) through the equation $$\rlap{--} h\omega = \frac{1}{{\mu _0 }}\smallint B^{\left( 3 \right)} \cdot B^{\left( 3 \right) * } dV.$$ When light magnetizes matter, the unitB (3) of magnetic flux density per photon is transferred from light to matter. This is equivalent to an elastic transfer of angular momentum. Experimental indications for the existence ofB (3) are discussed.  相似文献   

16.
A conjecture – the modified super-additivity inequality of relative entropy – was proposed in Zhang et al. (Phys. Lett. A 377:1794–1796, 2013): There exist three unitary operators \(U_{A}\in \mathrm {U}(\mathcal {H}_{A}), U_{B}\in \mathrm {U}(\mathcal {H}_{B})\) , and \(U_{AB}\in \mathrm {U}(\mathcal {H}_{A}\otimes \mathcal {H}_{B})\) such that $$\mathrm{S}\left(U_{AB}\rho_{AB}U^{\dagger}_{AB}||\sigma_{AB}\right)\geqslant \mathrm{S}\left(U_{A}\rho_{A}U^{\dagger}_{A}||\sigma_{A}\right) + \mathrm{S}\left(U_{B}\rho_{B}U^{\dagger}_{B}||\sigma_{B}\right), $$ where the reference state σ is required to be full-ranked. A numerical study on the conjectured inequality is conducted in this note. The results obtained indicate that the modified super-additivity inequality of relative entropy seems to hold for all qubit pairs.  相似文献   

17.
In the study of the heat transfer in the Boltzmann theory, the basic problem is to construct solutions to the following steady problem: $$v \cdot \nabla _{x}F =\frac{1}{{\rm K}_{\rm n}}Q(F,F),\qquad (x,v)\in \Omega \times \mathbf{R}^{3}, \quad \quad (0.1) $$ v · ? x F = 1 K n Q ( F , F ) , ( x , v ) ∈ Ω × R 3 , ( 0.1 ) $$F(x,v)|_{n(x)\cdot v<0} = \mu _{\theta}\int_{n(x) \cdot v^{\prime}>0}F(x,v^{\prime})(n(x)\cdot v^{\prime})dv^{\prime},\quad x \in\partial \Omega,\quad \quad (0.2) $$ F ( x , v ) | n ( x ) · v < 0 = μ θ ∫ n ( x ) · v ′ > 0 F ( x , v ′ ) ( n ( x ) · v ′ ) d v ′ , x ∈ ? Ω , ( 0.2 ) where Ω is a bounded domain in ${\mathbf{R}^{d}, 1 \leq d \leq 3}$ R d , 1 ≤ d ≤ 3 , Kn is the Knudsen number and ${\mu _{\theta}=\frac{1}{2\pi \theta ^{2}(x)} {\rm exp} [-\frac{|v|^{2}}{2\theta (x)}]}$ μ θ = 1 2 π θ 2 ( x ) exp [ - | v | 2 2 θ ( x ) ] is a Maxwellian with non-constant(non-isothermal) wall temperature θ(x). Based on new constructive coercivity estimates for both steady and dynamic cases, for ${|\theta -\theta_{0}|\leq \delta \ll 1}$ | θ - θ 0 | ≤ δ ? 1 and any fixed value of Kn, we construct a unique non-negative solution F s to (0.1) and (0.2), continuous away from the grazing set and exponentially asymptotically stable. This solution is a genuine non-equilibrium stationary solution differing from a local equilibrium Maxwellian. As an application of our results we establish the expansion ${F_s=\mu_{\theta_0}+\delta F_{1}+O(\delta ^{2})}$ F s = μ θ 0 + δ F 1 + O ( δ 2 ) and we prove that, if the Fourier law holds, the temperature contribution associated to F 1 must be linear, in the slab geometry.  相似文献   

18.
The phase dismatching effect on the scattering due to screw dislocations is reformulated to take the discreteness of lattice sites into account. Thet-matrix for an electron scattered from the statep top′ is $$\begin{gathered} t\left( {p,p'} \right) = ip_z T\exp \left\{ {i\left( {p - p'} \right) \cdot m_A } \right\}\exp \left\{ {i\left( {p - p'} \right) \cdot \left( {i + j} \right)/2} \right\} \hfill \\ \cdot \frac{{\left[ {\exp \left( { - ip_y } \right) - \exp \left( {ip'_y } \right)} \right] + \left( {\upsilon _y /\upsilon _x } \right)\left[ {\exp \left( {ip_x } \right) - \exp \left( { - ip'_x } \right)} \right]}}{{1 - \exp \left[ {i\left\{ {\left( {p_x - p'_x } \right) + \left( {\upsilon _y /\upsilon _x } \right)\left( {p_y - p'_y } \right)} \right\}} \right]}} \hfill \\ \end{gathered}$$ for 0≦v y v x ≦1 and |p y |, |p′ y |?1. Here,v is the group velocity of the incident electron andm A is the position of the dislocation axis. All vector notations represent vectors in two-dimensional space, the unit vectors of which are represented byi andj. Expressions for |p y |, |p′ y |?π and other values ofv are obtained through simple modifications. As an application, the resistivity due to screw dislocations is discussed qualitatively.  相似文献   

19.
E P Bashkin 《Pramana》1987,28(5):601-601
As the temperature is lowered we get an interesting temperature region? d?T?? 2/mr 0 2 (where? d is the quantum degeneracy temperature,m the mass of a gas molecule,r 0 the radius of interparticle interaction) in which the thermal de Broglie wavelength Λ of a particle is considerably greater than its sizer 0 though Λ turns out to be less than the mean interparticle distanceN ?1/3?Λ?r 0. Although the gas molecules obey the classical Boltzmann-Maxwell statistics the system as a whole begins to exhibit a larger number of essentially quantum macroscopic collective features. One of the most interesting and dramatic features is the possibility of propagation of weakly damped spin oscillations in spin-polarized gases (external magnetic field, optical pumping). Such oscillations can propagate both in the low-frequencyθτ?1 regime and the high frequencyθτ?1. The last case is highly non-trivial for a Boltzmann gas with a short range interaction between particles. The weakness of relaxation damping of spin modes implies that the degree of polarization is high enough 1>/|α|?|a|/Λ, whereα=(N +?N ?)N,a is the two-particles-wave scattering length. Under these conditions the spectrum of magnons has the form (Bashkin 1981, 1984; Lhuillier and Laloe 1982) 1 $$\omega = \Omega _H + \left( {{{K^2 \nu _{\rm T}^2 } \mathord{\left/ {\vphantom {{K^2 \nu _{\rm T}^2 } {\Omega _{int} }}} \right. \kern-\nulldelimiterspace} {\Omega _{int} }}} \right)\left( {{{1 - i} \mathord{\left/ {\vphantom {{1 - i} {\Omega _{int} }}} \right. \kern-\nulldelimiterspace} {\Omega _{int} }}\tau } \right), \Omega _{int} = {{ - 4\pi ahN\alpha } \mathord{\left/ {\vphantom {{ - 4\pi ahN\alpha } m}} \right. \kern-\nulldelimiterspace} m}, \nu _{\rm T}^2 = {T \mathord{\left/ {\vphantom {T m}} \right. \kern-\nulldelimiterspace} m}$$ where Ω H is the Larmor precession frequency for spins in the magnetic fieldH. Collisionless Landau damping restricts the region of applicability of (1) with not too large wave vectorsKv T?|Ωint|. The existence of collective spin waves has been experimentally confirmed in NMR-experiments with gaseous atomic hydrogen H↑ (Johnsonet al 1984). The presence of undamped spin oscillations means automatically the existence of long range correlations for transverse magnetization. Such correlations decrease with the distance according to the power law 2 $$\delta _{ik} \left( r \right) = 2\left| a \right|\frac{{\left( {\beta N\alpha } \right)^2 }}{\gamma }\delta _{ik} $$ . Hereβ is the molecule magnetic moment. Spin waves being even damped can nevertheless reveal themselves atT?? 2/mr 0 2 or when |α|?r 0/Λ. The first experimental discovery or damped spin waves in gaseous3He↑ has been done in Nacheret al 1984. Oscillations of magnetization can also propagate in some condensed media such as liquid3He-4He solutions, semimagnetic semiconductors etc.  相似文献   

20.
Consider the 1/2-Ising model inZ 2. Let σ j be the spin at the site (j, 0)∈Z 2 (j=0, ±1, ±2, ...). Let \(\{ X_n \} _{n = 0}^{ + \infty } \) be a random walk with the random transition probabilities such that $$P(X_{n + 1} = j \pm 1|X_n = j) = p_j^ \pm \equiv 1/2 \pm v(\sigma _j - \mu )/2$$ We show a case whereE[p j + E[p j ? ], but \(\mathop {\lim }\limits_{n \to \infty } X_n = - \infty \) is recurrent a.s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号