首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation   总被引:10,自引:0,他引:10  
Eukaryotic cells tightly control DNA replication so that replication origins fire only once during S phase within the same cell cycle. Cell cycle-regulated degradation of the replication licensing factor Cdt1 plays important roles in preventing more than one round of DNA replication per cell cycle. We have previously shown that the SCF(Skp2)-mediated ubiquitination pathway plays an important role in Cdt1 degradation. In this study, we demonstrate that human Cdt1 is a substrate of Cdk2 and Cdk4 both in vivo and in vitro. Overexpression of cyclin-dependent kinase inhibitors such as p21 and p27 dramatically suppresses the phosphorylation of Cdt1, disrupts the interaction of Cdt1 with the F-box protein Skp2, and blocks the degradation of Cdt1. Further analysis reveals that Cdt1 interacts with cyclin/cyclin-dependent kinase (Cdk) complexes through a cyclin/Cdk binding consensus site, located at the N terminus of Cdt1. A Cdt1 mutant carrying four amino acid substitutions at the Cdk binding site dramatically reduces associations with cyclin/Cdk complexes. This mutant is not phosphorylated, fails to bind Skp2 and is more stable than wild-type Cdt1. These data suggest that cyclin/Cdk-mediated Cdt1 phosphorylation is required for the association of Cdt1 with the SCF(Skp2) ubiquitin ligase and thus is important for the cell cycle dependent degradation of Cdt1 in mammalian cells.  相似文献   

2.
Recent work identified the E3 ubiquitin ligase CRL4(Cdt2) as mediating the timely degradation of Cdt1 during DNA replication and following DNA damage. In both cases, proliferating cell nuclear antigen (PCNA) loaded on chromatin mediates the CRL4(Cdt2)-dependent proteolysis of Cdt1. Here, we demonstrate that while replication factor C subunit 1 (RFC1)-RFC is required for Cdt1 degradation after UV irradiation during the nucleotide excision repair process, another RFC complex, Ctf18-RFC, which is known to be involved in the establishment of cohesion, has a key role in Cdt1 degradation in S phase. Cdt1 segments having only the degron, a specific sequence element in target protein for ubiquitination, for CRL4(Cdt2) were stabilized during S phase in Ctf18-depleted cells. Additionally, endogenous Cdt1 was stabilized when both Skp2 and Ctf18 were depleted. Since a substantial amount of PCNA was detected on chromatin in Ctf18-depleted cells, Ctf18 is required in addition to loaded PCNA for Cdt1 degradation in S phase. Our data suggest that Ctf18 is involved in recruiting CRL4(Cdt2) to PCNA foci during S phase. Ctf18-mediated Cdt1 proteolysis occurs independent of cohesion establishment, and depletion of Ctf18 potentiates rereplication. Our findings indicate that individual RFC complexes differentially control CRL4(Cdt2)-dependent proteolysis of Cdt1 during DNA replication and repair.  相似文献   

3.
Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27Kip1 was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCFSkp2 ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCFSkp2 pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability.  相似文献   

4.
Cdt1, a protein essential in G1 for licensing of origins for DNA replication, is inhibited in S-phase, both by binding to geminin and degradation by proteasomes. Cdt1 is also degraded after DNA damage to stop licensing of new origins until after DNA repair. Phosphorylation of Cdt1 by cyclin-dependent kinases promotes its binding to SCF-Skp2 E3 ubiquitin ligase, but the Cdk2/Skp2-mediated pathway is not essential for the degradation of Cdt1. Here we show that the N terminus of Cdt1 contains a second degradation signal that is active after DNA damage and in S-phase and is dependent on the interaction of Cdt1 with proliferating cell nuclear antigen (PCNA) through a PCNA binding motif. The degradation involves N-terminal ubiquitination and requires Cul4 and Ddb1 proteins, components of an E3 ubiquitin ligase implicated in protein degradation after DNA damage. Therefore PCNA, the matchmaker for many proteins involved in DNA and chromatin metabolism, also serves to promote the targeted degradation of associated proteins in S-phase or after DNA damage.  相似文献   

5.
Cdt1 is a licensing factor for DNA replication, the function of which is tightly controlled to maintain genome integrity. Previous studies have indicated that the cell cycle-dependent degradation of Cdt1 is triggered at S phase to prevent re-replication. In this study, we found that Cdt1 is degraded upon DNA damage induced by either UV treatment or gamma-irradiation (IR). Although the IR-triggered degradation of Cdt1 was caffeine-insensitive, the UV-triggered degradation of Cdt1 was caffeine-sensitive. This indicates that the cells treated with UV utilize the checkpoint pathway, which differs from that triggered by IR. A recent study has suggested that Cdt1 is phosphorylated, ubiquitylated, and degraded at the G(1)/S boundary in the normal cell cycle. Treatment with MG132, a proteasome inhibitor, inhibited the degradation of Cdt1 and resulted in the accumulation of the phosphorylated form of Cdt1 after UV treatment. In the case of UV treatment, phosphorylation of Cdt1 induced the recruitment of Cdt1 to a SCF(Skp2) complex. Moreover, ectopic overexpression of Cdt1 after UV treatment interfered the inhibition of DNA synthesis. These results indicate that Cdt1 is a target molecule of the cell cycle checkpoint in UV-induced DNA damage.  相似文献   

6.
Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase   总被引:25,自引:0,他引:25  
The cyclin-dependent kinase inhibitor p21Cip1 has important roles in the control of cell proliferation, differentiation, senescence, and apoptosis. It has been observed that p21 is a highly unstable protein, but the mechanisms of its degradation remained unknown. We show here that p21 is a good substrate for an SCF (Skp1-Cullin1-F-box protein) ubiquitin ligase complex, which contains the F-box protein Skp2 (S phase kinase-associated protein 2) and the accessory protein Cks1 (cyclin kinase subunit 1). A similar ubiquitin ligase complex has been previously shown to be involved in the degradation of a related cyclin-dependent kinase inhibitor, p27Kip1. The levels of Skp2 oscillate in the cell cycle, reaching a maximum in S phase. The ubiquitylation of p21 in vitro required the supplementation of all components of the SCF complex as well as of Cks1 and Cdk2-cyclin E. The protein kinase Cdk2-cyclin E acts both by the phosphorylation of p21 on Ser-130 and by the formation of a complex with p21, which is required for its presentation to the ubiquitin ligase. As opposed to the case of p27, the phosphorylation of p21 stimulates its ubiquitylation but is not absolutely required for this process. Levels of p21 are higher in Skp2-/- mouse embryo fibroblasts than in wild-type fibroblasts in the S phase, and the rates of the degradation of p21 are slower in cells that lack Skp2. It is suggested that SCFSkp2 participates in the degradation of p21 in the S phase.  相似文献   

7.
DeCesare JM  Stuart DT 《Genetics》2012,190(3):1001-1016
The Saccharomyces cerevisiae cyclin Clb5 is required for premeiotic S phase, meiotic recombination, and successful progression through meiosis. Clb5 is not essential for mitotic proliferation because Clb1-Clb4 can support DNA replication in clb5 clb6 mutants. Clb1, Clb3, and Clb4 accumulate in clb5 clb6 cells during meiotic differentiation yet fail to promote premeiotic DNA replication. When expressed under the regulation of the CLB5 promoter, Clb1 and Clb3 accumulate and are active in the early stages of meiotic differentiation but cannot induce premeiotic DNA replication, suggesting that they do not target Cdk1 to the necessary substrates. The Clb5 hydrophobic patch (HP) residues are important for Clb5 function but this motif alone does not provide the specificity required for Clb5 to induce premeiotic S phase. Domain exchange experiments demonstrated that the amino terminus of Clb5 when fused to Clb3 confers upon Clb3 the ability to induce premeiotic S phase. Chimeric cyclins containing smaller regions of the Clb5 amino terminus displayed reduced ability to activate premeiotic DNA replication despite being more abundant and having greater associated histone H1 kinase activity than endogenous Clb5. These observations suggest that Clb5 has a unique ability to trigger premeiotic S phase and that the amino-terminal region of Clb5 contributes to its specificity and regulates the functions performed by the cyclin-Cdk complex.  相似文献   

8.
p27(Kip1), an important regulator of Cdk2 activity and G1/S transition, is tightly regulated in a cell-type and condition-specific manner to integrate mitogenic and differentiation signals governing cell cycle progression. We show that p27 protein levels progressively declined from mid-G1 through late-G2 phase as density-arrested 3T3-L1 preadipocytes synchronously reentered the cell cycle during early stages of adipocyte differentiation. This dramatic fall in p27 protein accumulation was due, at least in part, to a decrease in protein stability. Specific inhibitors of the 26S proteasome were shown to completely block the decrease in p27 protein levels throughout G1, increase the abundance of ubiquitylated p27 protein, and inhibit G1/S transition resulting in G1 arrest. It is further demonstrated that p27 was phosphorylated on threonine 187 during S phase progression by Cdk2 and that phosphorylated p27 was polyubiquitylated and degraded. Furthermore, we demonstrate that Skp2 and Cks1 dramatically increased during S/G2 phase progression concomitantly with the maximal fall in p27 protein. Complete knockdown of Skp2 with RNA interference partially prevented p27 degradation equivalent to that observed with Cdk2 blockade suggesting that the SCF(Skp2) E3 ligase and other proteasome-dependent mechanisms contribute to p27 degradation during preadipocyte replication. Interestingly, Skp2-mediated p27 degradation was not essential for G1/S or S/G2 transition as preadipocytes shifted from quiescence to proliferation during adipocyte hyperplasia. Finally, evidence is presented suggesting that elevated p27 protein in the absence of Skp2 was neutralized by sequestration of p27 protein into Cyclin D1/Cdk4 complexes.  相似文献   

9.
It is important that chromosomes are duplicated only once per cell cycle. Over-replication is prevented by multiple mechanisms that block the reformation of a pre-replicative complex (pre-RC) onto origins in S and G2 phase. We have investigated the developmental regulation of Double-parked (Dup) protein, the Drosophila ortholog of Cdt1, a conserved and essential pre-RC component found in human and other organisms. We find that phosphorylation and degradation of Dup protein at G1/S requires cyclin E/CDK2. The N terminus of Dup, which contains ten potential CDK phosphorylation sites, is necessary and sufficient for Dup degradation during S phase of mitotic cycles and endocycles. Mutation of these ten phosphorylation sites, however, only partially stabilizes the protein, suggesting that multiple mechanisms ensure Dup degradation. This regulation is important because increased Dup protein is sufficient to induce profound rereplication and death of developing cells. Mis-expression has different effects on genomic replication than on developmental amplification from chorion origins. The C terminus alone has no effect on genomic replication, but it is better than full-length protein at stimulating amplification. Mutation of the Dup CDK sites increases genomic re-replication, but is dominant negative for amplification. These two results suggest that phosphorylation regulates Dup activity differently during these developmentally specific types of DNA replication. Moreover, the ability of the CDK site mutant to rapidly inhibit BrdU incorporation suggests that Dup is required for fork elongation during amplification. In the context of findings from human and other cells, our results indicate that stringent regulation of Dup protein is critical to protect genome integrity.  相似文献   

10.
Cul4 E3 ubiquitin ligases contain the cullin 4 scaffold and the triple beta propeller Ddb1 adaptor protein, but few substrate receptors have been identified. Here, we identify 18 Ddb1- and Cul4-associated factors (DCAFs), including 14 containing WD40 repeats. DCAFs interact with multiple surfaces on Ddb1, and the interaction of WD40-containing DCAFs with Ddb1 requires a conserved "WDXR" motif. DCAF2/Cdt2, which is related to S. pombe Cdt2, functions in Xenopus egg extracts and human cells to destroy the replication licensing protein Cdt1 in S phase and after DNA damage. Depletion of human Cdt2 causes rereplication and checkpoint activation. In Xenopus, Cdt2 is recruited to replication forks via Cdt1 and PCNA, where Cdt1 ubiquitylation occurs. These studies uncover diverse substrate receptors for Cul4 and identify Cdt2 as a conserved component of the Cul4-Ddb1 E3 that is essential to destroy Cdt1 and ensure proper cell cycle regulation of DNA replication.  相似文献   

11.
DNA replication initiation is tightly controlled so that each origin only fires once per cell cycle. Cell cycle-dependent Cdt1 degradation plays an essential role in DNA replication control, as overexpression of Cdt1 leads to re-replication. In this study, we investigated the mechanisms of Cdt1 degradation in mammalian cells. We showed that the F-box protein Skp2 specifically interacted with human Cdt1 in a phosphorylation-dependent manner. The SCF(Skp2) complex ubiquitinated Cdt1 both in vivo and in vitro. Down-regulation of Skp2 or disruption of the interaction between Cdt1 and Skp2 resulted in a stabilization and accumulation of Cdt1. These results suggest that the SCF(Skp2)-mediated ubiquitination pathway may play an important role in the cell cycle-dependent Cdt1 degradation in mammalian cells.  相似文献   

12.
13.
Previous reports showed that chromatin-associated PCNA couples DNA replication with Cul4-DDB1(Cdt2)-dependent proteolysis of the licensing factor Cdt1. The CDK inhibitor p21, another PCNA-binding protein, is also degraded both in S phase and after UV irradiation. Here we show that p21 is degraded by the same ubiquitin-proteasome pathway as Cdt1 in HeLa cells. When PCNA or components of Cul4-DDB1(Cdt2) were silenced or when the PCNA binding site on p21 was mutated, degradation of p21 was prevented both in S phase and after UV irradiation. p21 was co-immunoprecipitated with Cul4A and DDB1 proteins when expressed in cells. The purified Cul4A-DDB1(Cdt2) complex ubiquitinated p21 in vitro. Consistently, p21 protein levels are low during S phase and increase around G(2) phase. Mutational analysis suggested that in addition to the PCNA binding domain, its flanking regions are also important for recognition by Cul4-DDB1(Cdt2). Our findings provide a new aspect of proteolytic control of p21 during the cell cycle.  相似文献   

14.
The current concept regarding cell cycle regulation of DNA replication is that Cdt1, together with origin recognition complex and CDC6 proteins, constitutes the machinery that loads the minichromosome maintenance complex, a candidate replicative helicase, onto chromatin during the G(1) phase. The actions of origin recognition complex and CDC6 are suppressed through phosphorylation by cyclin-dependent kinases (Cdks) after S phase to prohibit rereplication. It has been suggested in metazoan cells that the function of Cdt1 is blocked through binding to an inhibitor protein, geminin. However, the functional relationship between the Cdt1-geminin system and Cdks remains to be clarified. In this report, we demonstrate that human Cdt1 is phosphorylated by cyclin A-dependent kinases dependent on its cyclin-binding motif. Cdk phosphorylation resulted in the binding of Cdt1 to the F-box protein Skp2 and subsequent degradation. In contrast, in vitro DNA binding activity of Cdt1 was inhibited by the phosphorylation. However, geminin binding to Cdt1 was not affected by the phosphorylation. Finally we provide evidence that inactivation of Cdk1 results in Cdt1 dephosphorylation and rebinding to chromatin in murine FT210 cells synchronized around the G(2)/M phase. Taken together, these findings suggest that Cdt1 function is also negatively regulated by the Cdk phosphorylation independent of geminin binding.  相似文献   

15.
The replication of genomic DNA is strictly regulated to occur only once per cell cycle. This regulation centers on the temporal restriction of replication licensing factor activity. Two distinct ubiquitin ligase (E3) complexes, CUL4/DDB1 and SCF(Skp2), have been reported to target the replication licensing factor Cdt1 for ubiquitin-mediated proteolysis. However, it is unclear to what extent these two distinct Cdt1 degradation pathways are conserved. Here, we show that Caenorhabditis elegans DDB-1 is required for the degradation of CDT-1 during S phase. DDB-1 interacts specifically with CUL-4 but not with other C. elegans cullins. A ddb-1 null mutant exhibits extensive DNA rereplication in postembryonic BLAST cells, similar to what is observed in cul-4(RNAi) larvae. DDB-1 physically associates with CDT-1, suggesting that CDT-1 is a direct substrate of the CUL-4/DDB-1 E3 complex. In contrast, a deletion mutant of the C. elegans Skp2 ortholog, skpt-1, appears overtly wild type with the exception of an impenetrant gonad migration defect. There is no appreciable role for SKPT-1 in the degradation of CDT-1 during S phase, even in a sensitized ddb-1 mutant background. We propose that the CUL-4/DDB-1 ubiquitin ligase is the principal E3 for regulating the extent of DNA replication in C. elegans.  相似文献   

16.
17.
18.
FBXO31 was originally identified as a putative tumor suppressor gene in breast, ovarian, hepatocellular, and prostate cancers. By screening a set of cell cycle-regulated proteins as potential FBXO31 interaction partners, we have now identified Cdt1 as a novel substrate. Cdt1 DNA replication licensing factor is part of the pre-replication complex and essential for the maintenance of genomic integrity. We show that FBXO31 specifically interacts with Cdt1 and regulates its abundance by ubiquitylation leading to subsequent degradation. We also show that Cdt1 regulation by FBXO31 is limited to the G2 phase of the cell cycle and is independent of the pathways previously described for Cdt1 proteolysis in S and G2 phase. FBXO31 targeting of Cdt1 is mediated through the N terminus of Cdt1, a region previously shown to be responsible for its cell cycle regulation. Finally, we show that Cdt1 stabilization due to FBXO31 depletion results in re-replication. Our data present an additional pathway that contributes to the FBXO31 function as a tumor suppressor.  相似文献   

19.
The role of Asp-462 in regulating Akt activity   总被引:2,自引:0,他引:2  
Protein kinase Akt, an important downstream target of phosphatidylinositol 3-kinase, is one of the major survival factors in mammalian cells. It has been shown that phosphorylation of the C-terminal hydrophobic motif is required for Akt activation. The activated Akt then phosphorylates several pro-apoptotic proteins and prevents apoptosis mediated by caspases and the mitochondria. Interestingly, Akt has also been implicated to be a direct substrate of caspases in apoptotic cells induced by Fas (Widmann, C., Gibson, S., and Johnson, G. L. (1998) J. Biol. Chem. 273, 7141-7147) and anoikis (Bachelder, R. E., Wendt, M. A., Fujita, N., Tsuruo, T., and Mercurio, A. M. (2001) J. Biol. Chem. 276, 34702-34707). In this study we showed that cytokine withdrawal resulted in Akt degradation by caspases as well. Furthermore, we demonstrated residue Asp-462 of Akt1 which is just upstream of the hydrophobic motif to be the primary cleavage site. The Akt1 mutant (D462N) that prevented caspase cleavage was more stable during factor withdrawal and enhanced cell survival. The Akt truncation mutant mimicking the caspase cleavage product lost its kinase activity and functioned as a dominant negative to promote cell death. Our results suggest that the balance between Akt and caspase activity controls cell survival. In particular, caspases are able to render Akt inactive and dominantly inhibit the Akt pathway by cleaving off the C-terminal hydrophobic motif. Consequently, the survival signal is quickly down-regulated to allow apoptosis to occur.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号